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CHAPTER 1 

GENERAL INTRODUCTION  

 

Dissertation Organization 

 

This dissertation is comprised of five chapters. Chapter 1 (this chapter) is the general 

introduction of the dissertation. It includes the overview of the dissertation's structure and its 

organization. It also gives an introduction to single particle tracking (SPT), SPT probes, and 

their applications in optical imaging studies. Several optical microscopic techniques 

developed for single particle orientation and rotational tracking (SPORT), together with their 

basic light microscopy working principles, are briefly introduced. The development and 

applications of differential interference contrast (DIC) microscopy and DIC-based SPORT 

techniques are also discussed. Chapter 2 is modified from a manuscript published in 

Analytical Chemistry, reporting the synthesis of multishell Au/Ag/SiO2 nanorods and their 

application of these optically tunable probes in DIC based SPORT studies. The addition of a 

silver shell provides improved sensitivity and silica coating provides enhanced stability and 

biocompatibility. This new rotational probe is a promising imaging probe for single 

plasmonic particle tracking experiments in biological systems. Chapter 3 introduces a novel 

five-dimensional SPT (5D-SPT) technique based on the subtle modification of the standard 

DIC microscope with the addition of a wedge prism. The modification produces parallax-

DIC patterns while an objective scanner enables the auto-focusing capability. With the 

implementation of an automatic feedback loop algorithm in the tracking program, the 

nanoparticles of interest are kept in focus to provide the highest possible S/N for 2D 

localization and orientation determination, while their z positions are recorded from the 

vertical movement of a high-precision objective scanner. This 5D-SPT technique is used to 
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study endocytosis and intracellular transport of different cargo in live cell environment. 

Chapter 4 demonstrates the application of autocorrelation function analysis on the 

interpretation of gold nanorod rotational dynamics. This study investigates the rotations of 

surface modified gold nanorods on synthetic lipid bilayers. This chapter provides details on 

how experimental parameters, such as trajectory length of the SPT tracking and frame rate 

(exposure time), affect the extraction of rotational correlation information with the aid of 

computer simulations. This work presents efforts on data analysis and experiment design in 

the field of rotational dynamics studies. 

 

Introduction to Single Particle Tracking 

 

Single particle tracking 

 

SPT is of great importance in the study of chemical and biological dynamic systems, 

aided by the advance of light microscope techniques1,2 and the development of particle 

tracking methods.3-6 The term ‘particle’ can be a single molecule, a quantum dot, a 

nanoparticle, a macromolecular complex, an organelle, a virus or a microsphere.6 SPT 

experiments record the motions of individual particles in a time series and extract a wealth of 

information on individual dynamics that is cancelled out in ensemble experiments by image 

analysis. Many efforts have been devoted to SPT image analysis.4,7-9  Image processing 

usually involves three steps.6,10 The first step is the detection or localization of the particles. 

Base on some certain set criteria and signal-to-noise (S/N) ratio, an image of particles at a 

given time is processed to distinguish the particles from the background. The particles' 

spatial positions are localized in this step. Repeating this process for every image of the 

sequence provides the localization information of the particles as a function of time. The 

second step involves the linking of particles throughout all the frames in a series of images. 
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The particle positions in the time series are linked frame by frame into trajectories. 

Numerous methods have been developed for diverse experimental needs.9 Due to the large 

diversity in SPT research, there is no universal best particle tracking method for all SPT 

experiments. Details on different methods and their comparison can be found in many 

publications.10-14 The last step is the interpretation of trajectories. After the trajectories are 

obtained, the mean-square displacement can be extracted and fitted into standard motions, 

such as random walk, directed motion, confined motion, or immobile. This provides further 

information of the particle’s motions and its interactions with the surroundings. This method 

provides insight knowledge of different biological processes, which cannot be obtained by 

ensemble experiments. Because of its advantages, SPT has been used in a wide range of 

biological fields, such as the study of membrane dynamics,15,16 intracellular transport,17,18 

cellular uptakes.19,20 

Two-dimensional (2D) SPT techniques are well established because the lateral 

positions of probes can be easily detected from the recorded images with high precision and 

accuracy. In contrast, three-dimensional (3D) SPT techniques are more challenging, as they 

usually require more sophisticated microscope designs. Recently, Deschout et al. reviewed 

eight different groups of microscope designs for unambiguous 3D SPT localization with 

various precisions.21 These methods are based on the multiple image-detection of the same 

probe at different image planes or the manipulation of a 3D point spread function (PSF) 

profile. Erdal Toprak et al. introduced a bifocal imaging method for 3D SPT of both 

fluorescent and nonfluorescent probes.22 In this study, lateral position (x,y) was localized in a 

focused image and axial z position was determined from a defocused image simultaneously 

using a single CCD camera. This 3D SPT technique was further applied to in vitro bead 
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tracking and in vivo 3D organelle and bead tracking with 2-5 nm accuracy. One should note 

that increasing the image planes extends the axial localization range but sacrifices the 

localization precision.  

By inserting a cylindrical lens in the microscope light path, the axial positions of 

probes can be encoded into 2D images.23,24 This PSF engineering method introduces 

astigmatism that produces elliptically shaped images. The ellipticity and orientation of PSF 

depend on the axial z position of the probe. The axial positions of tracking probes can be 

calculated by calibrating the 2D image shapes with certain axial distance. PSF can also be 

manipulated by introducing a phase ramp over one-half of the detection light path with a 

wedge prism.25,26 In this technique, known as parallax, the axial localization is determined by 

the separation distance of the two split images. The application of this technique is further 

discussed in chapter 3 on 5D-SPT studies. Parallax imaging can also be implemented by a set 

of mirrors.27 In other works, spatial light modulator or manufactured phase plate were used to 

generate more complex PSFs such as single helix (corkscrew),28 double helix,29,30 and 

tetrapod31 for 3D SPT applications. 

 

SPT probes 

 

Fluorescent optical probes and nonfluorescent nanoparticle probes are the two main 

categories of SPT probes. Biological fluorophores, organic dyes, and nanocrystals, such as 

semiconductor quantum dots (QDs) are the three main classes of fluorescent probes. 

Fluorophores obtained from natural products were first utilized as optical probes in biological 

studies. More stable fluorophores fuorescein isothiocyanate (FITC) and its many derivatives 

were later used in a broad range of fluorescence microscopy experiments.32 The discovery of 
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green fluorescent protein (GFP) and its variants allows labelling a whole cell or organism by 

expressing a fluorescent tag of interest, which greatly increases the specificity of labelling 

techniques. Roger Y. Tsien, Martin Chalfie, and Osamu Shimomura were awarded the Noble 

Prize in Chemistry in 2008 for the discovery and development of the GFP. The use of 

photoswitchable dyes lead to the development of three superresolution fluorescence imaging 

techniques: Stochastic optical reconstruction microscopy (STORM),24,33 photoactivated 

localization microscopy (PALM),34 and fluorescence photo-activation localization 

microscopy (fPALM).35 Fluorophores were usually switched on and off sequentially and 

their positions were localized with nanometer accuracy in each image cycle. With the help of 

these photoswitchable fluorescence probes, far-field fluorescence microscopy techniques 

break the diffraction limit of light, which otherwise restricts the spatial resolution of wide-

field optical microscopy techniques. The 2014 Chemistry Nobel Prize was awarded jointly to 

Eric Betzig, Stefan W. Hell and William E. Moerner for the development of super-resolved 

fluorescence microscopy. New fluorescence probes are still being discovered and developed 

for light microscopy applications.36 Traditional organic dyes that are small in size, with 

relatively large photon emission and the possibility of live cell labelling provide the ability to 

target specific biological structures. QDs are brighter and more photostable fluorescent 

probes than conventional organic dyes;37,38 however, QDs suffer from cytotoxicity, self-

aggregation and blinking.39-41 The synthesis and SPT applications of non-blinking QDs are 

reported elsewhere.42,43 Although photobleaching is a disadvantage of fluorescent probes, it 

was exploited in other techniques, such as fluorescence recovery after photobleaching 

(FRAP) and fluorescence loss in photobleaching (FLIP), for example to study the diffusion 

of molecules.44,45 Oxygen scavenging systems were usually used in single-molecule 
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fluorescence experiments to improve dye stability by removing O2 species.46 In addition, the 

blinking of QDs was exploited to allow superresolution imaging.47 

Nonfluorescent nanoparticle probes have become an increasingly popular alternative 

to traditional fluorescent probes in biological SPT applications because most nonfluorescent 

nanoparticle probes display excellent photostability, ease of synthesis and unique optical 

properties.48-50 Generally speaking, nonfluorescent nanoparticles include single component 

nanoparticles, hybrid nanoparticles, metallic alloys, silica, etc. Good photostability allows 

these nanoparticles to be dynamically tracked for indefinitely long periods without suffering 

photobleaching or blinking. Their large cross-sections allow them to be localized with high 

temporal and spatial resolution.49-51 Nonfluorescent probes are usually relatively nontoxic 

compared to most QDs. Noble metal nanoparticles, especially gold and silver, have gained 

much attention due to their localized surface plasmon resonance (SPR) and related 

properties,52 and are thus highly popular for nonfluorescent imaging techniques. Great 

success has been achieved for gold nanocrystal synthesis with wet chemistry methods. 

Various methods have been successfully developed to synthesize gold nanoparticles in a 

great variety of shapes and structures, such as spheres, rods, stars, and nanowires.53-55 Among 

these shapes, gold nanorods (AuNRs) are the most widely studied.52,56  The presence of 

longitudinal SPR and transverse SPR in AuNRs give rise to the anisotropic absorption and 

scattering properties of AuNRs, which makes AuNRs ideal orientation probes for SPORT 

applications.57-59  Hybrid nanoparticles can be made of multiple components to enable the 

multi-wavelength or multi-mode detection.60 Various types of hybrid nanoparticles have been 

synthesized with different optical properties.61 Most of them have not been used in SPT or 
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live cell imaging except in a few cases.62-64 In chapter 2, an attempt of using multishell 

Au/Ag/SiO2 core-shell hybrid nanorods for DIC-based SPORT techniques is presented. 

 

 

Introduction to SPORT Techniques 

 

While the conventional SPT techniques focus on translational movement of optical 

probes, SPORT research targets the rotational behavior of the imaging probes as well as their 

spatial movement. Compared to well-established translational tracking, resolving the 

orientation of optical probes in real time is more challenging. On the other hand, orientation 

and rotational information are crucial to understand many biological processes, such as self-

rotation of ATP synthase,65 the stepping of molecular motors66,67 and DNA polymerization.68 

Recent developments in optical imaging techniques have greatly expanded our ability to 

overcome the challenges associated with obtaining the translational dynamics as well as the 

rotational dynamics of optical probes. The Fang group originally used the acronym SPORT 

to describe a platform based on DIC microscopy for tracking the rotational dynamics of 

plasmonic gold nanorods in live cells.59,69 SPORT includes all imaging techniques in an 

effort to design and determine the orientation and rotational motions of any optical imaging 

probe.49,70 A short introduction to different SPORT techniques including some basic optical 

microscopy concepts and the working principles of these techniques are presented below. 

The use of fluorescent probes is discussed in the Fluorescence-based SPORT Techniques 

section. Discussion of SPORT techniques in all other sections is mainly focused on AuNRs, 

as these are some of the most widely and frequently used nonfluorescent rotational probes. 

Other techniques such as Raman spectroscopy and non-linear optical microscopy methods 

javascript:popupOBO('RXNO:0000246','C3NR02254D')
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were also used for orientation and rotational applications,71,72 but they are not included in this 

dissertation. 

 

Fluorescence-based SPORT techniques 

 

Fluorescence microscopy is one of the most widely used techniques for SPT and 

single molecule detection. Epi-fluorescence microscopy, as shown in Figure 1, is the 

simplest design among wide-field fluorescence microscopy imaging techniques. The 

excitation light, after passing through a proper excitation filter, illuminates all individual 

fluorophores in a relatively large area simultaneously. The illumination light passes through 

the whole depth of the sample, and the fluorescence emitted by the sample is collected by the 

microscope objective onto a complementary metal–oxide–semiconductor (COMS) or charge-

coupled device (CCD) camera. This allows simultaneous detection of all fluorescence probes 

in the field of view. However, this technique yields poor image resolution and contrast 

compared to other sophisticated fluorescence microscopy techniques.  

Total internal reflection fluorescence (TIRF) microscopy, another commonly used 

wide-field fluorescence microscopy imaging technique, was developed by Daniel Axelrod in 

early 1980s.73 There are two common TIRF microscope configurations, prism-based and 

objective-based.74 Both configurations are used for different kinds of specimens and 

applications. Figure 2 shows the schematic diagram of the prism-based TIRF microscopy. 

Prism-based TIRF has advantages over objective-based TIRF due to its lower cost and ease 

of controlling the incident light angle. Fundamentally, both configurations obey the same 

principle. When excitation light illuminates the interface between two media, coming from a 

higher refractive index medium (η1) to a lower refractive index medium (η2), at an incident 

angle larger than the critical angle, the incident light undergoes total internal reflection (TIR) 
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in the high refractive index medium. An evanescent field (EF) is generated and its intensity 

decreases exponentially along the z-axis into the low refractive index side. This EF depth 

depends on the excitation light wavelength, the incident angle, and the refractive indices (η1 

and η2). EF depth can extend up to a few hundred nanometers from the interface and allows 

the excitation of fluorescence probes at the interface. Fluorescence probes beyond the EF 

depth do not produce fluorescent photons, which translates into lower interference from other 

regions. TIRF microscopy has been extensively used in single-molecule detection of 

membrane-associated processes (cell receptors, cell-substrate interactions, exocytosis or 

endocytosis).75 

Fluorescence-based SPORT techniques utilize the fluorescence microscopy 

configuration to detect the transition dipole orientation of the fluorescence probes in different 

polarization channels.76-80 Fluorescence polarization anisotropy or polarization-dependent 

absorption measurements were used to resolve the dipole orientation of the fluorescence 

probes. Figure 3 shows a general schematic diagram of fluorescence polarization 

microscopy. A polarizing beam splitter is usually used to split the emitted fluorescence into 

two orthogonal polarization directions. Signals obtained in these two channels are used to 

calculate fluorescence anisotropy and relative fluorescence intensity in order to determine the 

orientation of the probes and their rotational dynamics.  

Various applications of fluorescence-based SPORT techniques have been reported in 

the literature.76,79 Joseph Forkey et al. reported the use of a single molecule fluorescence 

polarization technique in determining the orientation of Calmodulin (a calcium-modulated 

protein) on the light chain domain of myosin V in 3D with 20–40 ms temporal resolution.76 

Bisiodoacetamidorhodamine, a divalently reactive fluorophore, was used to label Calmodulin 
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at a known orientation. TIRF microscopy was used to image the actin and rhodamine-

labelled myosin V at two wavelengths with four different polarization states switched (time-

multiplexed). Their data confirmed the hand-over-hand model of individual double-headed 

myosin V moving along actin filaments, and provided evidence for lever arm hypothesis 

based on the calmodulin-binding domain rotation. Another work done by Toprak et al. used 

QDs as orientation probes to investigate the same biological system.79 They combined 

defocused orientation and position imaging (DOPI) techniques and fluorescence imaging 

with one-nanometer accuracy (FIONA)5 to observe the lever arm rotational dynamic and 

translocation of myosin V using TIRF microscope. In this work, focused images were used to 

localize QD-labelled myosin V with 1.5 nm accuracy by FIONA for tracking the 

translocation, and out-of-focused images (about 500 nm away from best focus position) were 

used to detect the orientation of the probes through a pattern-match analysis technique. The 

stepping behavior of the myosin V and the rotational dynamics of the lever arm were 

determined in detail. 

The limitations of the fluorescence-based SPORT techniques arise from the intrinsic 

photobleaching and/or blinking properties of the fluorescent probes. High autofluorescence 

background in cellular environment also limits applications to many biological problems. 

Defocused images give low signal-to-noise ratios. Pattern matching technique can be 

arbitrary and time-consuming. The technique requires switching between focused imaging 

and defocused imaging which can be an inconvenience. 
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Scattering-based SPORT techniques 

Bright field (BF) and dark field (DF) microscopy are the two simplest optical 

microscopy designs with their own sets of advantages and limitations. In BF microscopy, 

transmitted light illuminates the light-absorbing sample and the sample is seen as a dark spot 

on the bright background. This simplicity made BF microscopy a popular technique in the 

early years of light microscopy history. On the other hand, its limitations include very low 

contrast for most biological samples and non-light absorbing samples, and low optical 

resolution. In DF microscopy, the image contrast is enhanced due to the collection of only 

Rayleigh scattering light from the sample that is spatially separated from the illumination 

light. This produces images of bright samples on a dark background. The numerical aperture 

(NA) of the objective used in DF microscopy is smaller than that of the condenser. A light 

stop in the DF condenser is used to block the zeroth order illumination light from entering the 

objective. Despite being one of the oldest light microscopy techniques, DF microscopy was 

revitalized with new fast-growing nanotechnologies. DF microscopy was reported to be able 

to detect 5 nm particles under optimum conditions. It became a very useful SPT tool with 

nanometer spatial precision and microsecond temporal resolution. The technique, however, 

has its own limitations, such as the possibility of sample damage due to strong light 

illumination, and scattering interference from cellular components.81 

  DF microscopy is the first light microscopy technique used in the orientation study 

of nonfluorescent probes. The configuration of DF microscopy used for SPORT applications 

is illustrated in Figure 4. Sönnichsen et al. demonstrated that nonfluorescent rotational 

tracking probes, in this case AuNRs (25 nm × 60 nm), can be used to observe the 2D 

rotational diffusion when the probes are attached to a glass surface.82 A birefringent crystal 
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was used to split the scattered light into two orthogonal polarization directions for each 

AuNR. Each AuNR formed two spots in the detector and the intensities for the two spots 

were recorded simultaneously. Under the assumption of homogeneous illumination, the 

scattering intensity of a AuNRs in a particular polarization direction is proportional to (cos 

(θ))2, where θ is the angle between the AuNR and the polarization direction. Thus, the 

orientation of the AuNR can be resolved. Also the autocorrelation of the intensity traces was 

used to estimate the rotational diffusion time. Their results indicated that the rotational 

motion of the AuNRs was dominated by the particle-surface interactions. This method 

allowed 2D rotational tracking but was incapable of 3D orientation determinations. 

A defocused DF imaging technique was successfully used by Lehui Xiao et al. to 

determine the 3D orientation of AuNRs through deconvolution of the field distribution 

pattern in defocused DF images.83 Their technique can resolve the orientation of AuNRs in 

3D space without degeneracy. One should note that the aspect ratio of AuNR, the NA of the 

objective, the defocusing distance, and the polarization direction of the incident radiation will 

all affect the resulted images. Observed images are interpreted by comparing them with a 

series of simulated images with different parameters. 

Beside DF scattering methods, total internal reflection scattering (TIRS) methods 

were developed for the determination of the full 360 degree orientation of AuNRs.84,85 TIRS 

has the same configuration as TIRF. In TIRS, instead of collecting the emitted fluorescence, 

scattered light is recorded by the detector. Jiwon Ha et al. reported a TIRS method called 

focused orientation and position imaging (FOPI). 84 FOPI utilizes the coupling between 

AuNRs and a 50 nm thick gold film under a p-polarized laser to determine the orientation of 

AuNRs in a single frame without angular degeneracy in full 360 degrees. The coupling 
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changes the AuNR scattering PSF from circularly symmetric shape into donut-shapes, and 

forms characteristic image patterns when the AuNRs rotate in different angles. 

Another interesting work used resonance light scattering correlation spectroscopy 

(RLSCS) technique for rapid characterization of rotational and translational diffusion of 

GNPs and GNRs, which is also related to scattering,86 It will be further discussed in the 

Correlation Spectroscopy-base SPORT Techniques section. 

Any objects in the field of view can give scattering, thus, noise and interference often 

occur. For instance, the interference from other cellular components gives strong background 

scattering and greatly affects the detection of probes of interest in live cells. The presence of 

other larger objects or the aggregation of the probes can make the scattering signal 

predominant. Defocused DF imaging techniques suffer the same issues as mentioned in 

fluorescence-based SPORT technique discussion above. 

 

Absorption-based SPORT techniques 

Photothermal imaging technique is an optical microscopy method developed by 

David Boyer, based on the detection of nonfluorescent probe absorption.87 In this work, the 

nonfluorescent probes were heated by a frequency-modulated absorption beam and the local 

heating caused a change in refractive index of the medium. This change in refractive index 

was determined by another probe beam. The signal was shown to depend on the nanoparticle 

size and the heating laser power. Photothermal imaging technique has been used in cancer 

therapy applications.88 Wei-Shun Chang et al. applied the polarization-sensitive 

photothermal imaging technique to the observation of the 2D orientation of AuNRs.57 

Determination of the individual AuNR oritentation was based on the polarization anisotropy 
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of the transverse and longitudinal surface plasmonic absorptions. Quantitative orientation 

information of the AuNRs was obtained by fitting the photothermal polarization traces to an 

equation, thus allowing the accurate determination of individual AuNR orientation on a glass 

slide. A disadvantage of the absorption-based photothermal imaging technique is the 

possibility of biological sample damage due to the use of a high power laser.  

 

Correlation spectroscopy-based SPORT techniques 

The groups of Stephan Link and Jicun Ren independently adopted correlation 

spectroscopy methods for characterizing the rotational and translational dynamics of AuNRs 

based on the theory of fluorescence correlation spectroscopy (FCS).86,89 Figure 5 shows the 

schematic diagram of a typical FCS setup. FCS works on the principle of correlation analysis 

of fluorescence intensity fluctuation. In FCS, the sample is illuminated by the excitation laser 

beam through a microscope objective. The laser beam is directed by a dichroric mirror into 

the microscope objective. It is necessary to use a highly diluted sample (nM to pM) so that 

only a few objects of interest diffuse in and out of the focal volume. The signal fluctuation 

can be recorded by a detector, and the time-dependent intensity traces can be interpreted to 

obtain quantitative information, including diffusion coefficients, hydrodynamic radii, average 

concentrations, kinetic chemical reaction rates, singlet-triplet dynamics, etc. The 

interpretation process can also be done using an auto-correlator. 

The group of Stephan Link reported the use of one-photon luminescence correlation 

spectroscopy in measuring the hydrodynamic sizes and investigating the rotational and 

translational dynamics of AuNRs.89 Circularly polarized, 514 nm and 633 nm lasers were 

used to excite the transverse and longitudinal plasmon resonances of the AuNRs. The 
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interplay between hot electron-hole pairs and surface plasmons was observed, revealing that 

luminescence occurs via emission by a surface plasmon. One-photon luminescence 

correlation spectroscopy measurements were also confirmed to be less sensitive to the 

presence of larger nanoparticles or aggregates compared to scattering correlation 

spectroscopy measurements.  

Jicun Ren group applied resonance light scattering correlation spectroscopy (RLSCS) 

in characterizing rapid rotational and translational diffusion of GNPs and AuNRs in 

solution.86 Wavelength dependent resonance light scattering fluctuations were measured 

analogously to fluorescence fluctuations in FCS in order to obtain the translational and 

rotational diffusion coefficients and aspect ratios of AuNRs. Compared to the FCS setup, the 

emission filter was removed in the RLSCS setup. It is worth noting that a high NA objective 

was used to reduce the rotational component. By monitoring the change of the translational 

time, detection of DNA hybridization and the homogeneous immunoassay were 

demonstrated. 

 

DIC-based SPORT techniques 

DIC microscopy was initially introduced by Nomarski in the 1950s. Compared to BF, 

DF, and phase contrast microscopy, DIC provides higher contrast, better resolution, and 

shallow depth of field images on cellular visualization without sample staining. Thus, DIC 

microscopy has been used as complementary technique to other fluorescence-based 

techniques in biological imaging. Various DIC configurations were developed based on the 

difference in coherence of the illumination, such as Nomarski-DIC, Köhler-DIC, and Plas-

DIC configurations.90 The Nomarski-DIC microscope uses full objective and condenser 
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apertures for higher lateral resolution and better depth discrimination. This makes Nomarski-

DIC configuration one of the most popular DIC image formation models. DIC work done in 

this dissertation was performed with a Nikon Eclipse i80, which adopts the Nomarski DIC 

configuration for image formation. Thus, the DIC microscopy in the content that follows 

refer to Nomarski DIC microscopy. The Nikon Eclipse i80 microscope can be easily 

switched between epi-fluorescence mode and DF mode by simply changing some optical 

components. 

Figure 6 illustrates the light path of the Nomarski DIC microscope setup. The red and 

blue lines in the schematic stand for the light paths of two orthogonal beams split by the first 

Nomarski prism. The Nikon Eclipse i80 microscope is equipped with a tungsten lamp 

(maximum output power of 100 Watts) as a light source. This relatively low illumination 

light power causes minimal cell disruption and fluorescence photobleaching. DIC mode 

employs a quarter-wave plate, two polarizers, two Nomarski prisms, a high NA condenser 

(1.4) and a high NA objective (1.4). Unpolarized light passes through the first polarizer and 

the polarized light is split into two orthogonal polarized beams. The beams are directed onto 

the sample by the condenser. The separation distance of these two beams is shear distance. 

The beams experience different optical paths due to varying sample thicknesses. They are 

collected by the objective and focused onto the second Nomarski prism where they 

recombine. The beams interfere with each other after their vibrations are brought into same 

plane and axis by the second polarizer. An appropriate band pass filter is usually added into 

the light path for wavelength dependent plasmonic nanoparticle detection. The interference 

pattern of the final DIC image is recorded using a CCD or COMS camera. In short, DIC 
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microscope is a two-beam interferometer that determines the optical path length gradients of 

the sample. 

The DIC-based SPORT technique was initiated by Gufeng Wang for dynamic 

rotational tracking of anisotropic AuNRs (nonfluoresent plasmonic probes) in live cells.59 

The DIC images of AuNRs appear as disproportionate bright and dark spots. The DIC bright 

and dark intensities of an AuNR display periodic changes when the particle is rotated under a 

DIC microscope. The relative brightness (or relative darkness) is used to resolve the 

orientation of the AuNRs. The capacity of resolving rotational motions of AuNRs transported 

by motor proteins in 3D space was demonstrated both in an in vitro gliding assay experiment 

and in live cells. A later report in the group showed the use of this DIC-based SPORT 

technique to investigate the interactions of AuNRs with various surface modifiers and live 

cell membranes.69  

A modified DIC microscope with the addition of a dual-view filter cube at the exit 

port of the microscope was used to obtain the signal for both DIC and fluorescence imaging 

at two wavelengths.91 This dual-modality DIC/fluorescence SPORT technique allows the 

simultaneous imaging of fluorescently tagged biomolecules and plasmonic nanoprobes in 

living cells. Jiwon Ha et al. suggested the use of DIC polarization anisotropy in DIC-based 

SPORT technique in determining the orientation angle of AuNRs.92 Data proved that DIC 

polarization anisotropy is less sensitive to intensity fluctuations and capable of providing 

more reliable measurements in dynamic studies compared to the conventional DIC-based 

SPORT technique based on the absolute bright and dark intensity measurements. Defocused 

DIC microscopy was also demonstrated for the direct determination of the spatial orientation 

based on the scattering intensity distribution of a AuNR when the particle is close to the 



www.manaraa.com

18 

polarization directions.93 Beside AuNRs, micrometer-long gold nanowires94 and multishell 

Au/Ag/SiO2 core-shell nanorods62 were also explored as novel orientation probes for the 

development and applications of DIC-based SPORT technique. 

The PSF of a nanoparticle in DIC microscopy shows bright and dark intensity centers 

with gradients caused by the nature of the interference image formation. Simple Gaussian 

fitting of image profile as in DF and fluorescence microscopy does not work for DIC particle 

localizations.21 Gelles et al. demonstrated a cross-correlation method for plastic beads 

localization in DIC microscopy with nanometer pricision95 and this method was adopted by 

Yan Gu et al. for the 3D superlocalization of gold nanospheres.96 It is challenging to localize 

anisotropic AuNRs in DIC microscopy as the AuNR DIC image patterns change when the 

particle rotates. This correlation mapping localization method is applicable with decent 

localization precision. The correlation mapping method is employed in 5D tracking algorithm 

as presented in chapter 3. Further discussions on the rotational data interpretation in DIC-

based SPORT technique are included in chapter 4. 
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FIGURES 

 

 

 

 
 

 

 

 

Figure 1. Schematic diagram of epi-fluorescence microscopy setup. 

 



www.manaraa.com

20 

 
 

 

 

 

Figure 2. Schematic diagram of total internal reflection fluorescence microscopy setup. (It is 

not drawn to scale) 
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Figure 3. Schematic diagram of fluorescence polarization microscopy setup for SPORT 

applications. 
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Figure 4. Schematic diagram of dark field microscopy setup for SPORT applications. 

(Adapted with permission from ref 58. Copyright © 2005 American Chemical Society.) 
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Figure 5. Schematic diagram of the typical FCS setup. 
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Figure 6. The light path of the Nomarski DIC microscope setup and wavefront of the light 

beams. (Adapted with permission from ref 49. Copyright © 2013 American Chemical 

Society.) 
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Abstract 

Three-layer core-shell plasmonic nanorods (Au/Ag/SiO2-NRs), consisting of a gold 

nanorod core, a thin silver shell, and third, thin silica layer were synthesized and used as 

optical imaging probes under a differential interference contrast  microscope for single 

particle orientation and rotational tracking. The localized surface plasmon resonance modes 

were enhanced upon the addition of the silver shell, and the anisotropic optical properties of 

gold nanorods were maintained. The silica coating enables surface functionalization with 

silane coupling agents and provides enhanced stability and biocompatibility. Taking 

advantage of the longitudinal LSPR enhancement, the orientation and rotational information 

of the hybrid nanorods on synthetic lipid bilayers and on live cell membranes were obtained 
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with millisecond temporal resolution using a scientific complementary metal-oxide-

semiconductor camera. The results demonstrate that the as-synthesized hybrid nanorods are 

promising imaging probes with improved sensitivity and good biocompatibility for single 

plasmonic particle tracking experiments in biological systems. 

 

Introduction 

Single particle tracking (SPT) is a powerful tool to study the dynamics of cellular and 

molecular processes, such as membrane dynamics,1,2 viral infection,3 and intracellular 

transport.4,5 A large collection of imaging probes, including fluorescent molecules,6,7 

quantum dots,8,9 and plasmonic nanoparticles,5,10-16 have been visualized with the aid of 

various optical microscopy techniques. While it has become a routine practice in SPT 

experiments to identify the trajectory of an imaging probe, it is more difficult to resolve the 

dipole orientation of the probe in real time, which may be essential in understanding the 

underlying biological functions. Recently, considerable efforts have been made to overcome 

this challenge. Techniques such as fluorescence polarization microscopy,6-8 dark field 

polarization scattering,10 defocused orientation and position imaging,9,13 photothermal 

imaging,11 correlation spectroscopy,12,14 total internal reflection scattering microscopy,15,17 

and differential interference contrast (DIC) microscopy18,19 have been developed for single 

particle orientation and rotational tracking, which was coined as SPORT.19,20  

Gold nanorods (AuNRs) have been used extensively in SPORT experiments because 

of their high photostability, good biocompatibility, and most importantly, anisotropic optical 

properties arising from their localized surface plasmon resonance (LSPR). Great success has 

been achieved on the AuNR synthesis using seed-mediated methods to fabricate a variety of 
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AuNRs with different sizes, aspect ratios, and thus the resulting tunable extinction spectra 

across a wide spectral range.21,22 Compared with gold nanocrystals of similar size, silver 

nanocrystals exhibit stronger LSPR responses with more intense electric field enhancement 

and stronger absorption and scattering. However, the synthesis of anisotropic silver nanorods 

(AgNRs), especially for the smaller sizes (< 100 nm in length) that are better suited for 

biological studies, is more difficult than that of AuNRs in terms of size and shape uniformity 

control.23,24 Since silver shares the same face centered cubic crystal structure with gold and 

their lattice mismatch is as small as 0.27%, AuNRs are suitable templates for epitaxial silver 

growth to form Au/Ag core-shell nanorods (Au/AgNRs).25-30 The optical properties of 

Au/AgNRs can be finely tuned by controlling the aspect ratio of the AuNR cores and the 

amount of silver grown on the gold surface.29 Moreover, the formation of Au/AgNRs induces 

multiple plasmonic bands that differ from single-component nanocrystals. 

In view of the intrinsic cytotoxicity and instable nature of the silver shells in aqueous 

solution,23,31,32 encapsulation of Au/AgNRs within a thin silica layer to form a three-layer 

core-shell nanorod structure, which will be referred to as Au/Ag/SiO2-NR in this letter, can 

provide the necessary protection in biological imaging applications. The silica coating also 

improves the colloidal stability of Au/AgNRs, maintains the rod shape, and enables further 

surface functionalization with silane coupling agents for potential bioconjugation.33-35 

Surface modification of the silica shell usually involves covalent attachment; therefore, this 

avoids cysteine residue replacement of thiol ligands, which is often used in gold or silver 

surface functionalization.36  

In the present study, Au/Ag/SiO2-NRs were synthesized and tested for SPORT 

experiments. Millisecond/sub-millisecond temporal resolution was achieved in imaging the 
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fast dynamics of Au/Ag/SiO2-NRs rotating on synthetic lipid membranes and live cell 

membranes. To the best of our knowledge, this study demonstrates for the first time the 

development and application of hybrid core-shell nanorods as a new type of rotational probe. 

 

Results and Discussion 

The first step in synthesizing Au/Ag/SiO2-NRs was to prepare AuNRs using a seed-

mediated growth method in aqueous solution utilizing cetyltrimethylammonium bromide 

(CTAB) as capping agent to maintain colloidal stability.21 The average diameter, length, and 

aspect ratio of the synthesized AuNRs obtained from the TEM images (Figure S1 in the 

Supporting Information) were 22. 8 ± 3.2 nm, 52.6 ± 7.2 nm, and 2.3 ± 0.2, respectively. 

Their transverse and longitudinal LSPR wavelengths were centered at 517 nm and 632 nm, 

as shown in the UV-Vis extinction spectrum (Figure 1, green curve). 

In the second step of synthesis, a thin silver layer (~7 nm thick) was deposited onto 

the AuNRs following a published procedure.25,37 The thickness of the silver coating was 

controlled by adjusting the amount of AgNO3 precursor. Upon the addition of silver onto the 

AuNR cores, the extinction peak at the lowest energy wavelength was blue-shifted and new 

plasmonic bands appeared at higher energies. Figure S2 in the Supporting Information 

illustrates the UV-Vis extinction spectra of the Au/AgNRs with three Ag/Au molar ratios of 

0.11, 0.22, and 0.34. As the Ag/Au molar ratio increases, the silver shell becomes thicker and 

the longitudinal LSPR wavelength is blue-shifted from 632 nm to 563, 537, and 503 nm, 

respectively. This blue shift is attributed to the reduced aspect ratio of the nanorods after the 

silver coating and the increased silver loading on gold dominates the optical properties. This 

plasmonic band shift can be used to estimate the Ag shell thickness as well as to direct 
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further syntheses.26,28,30 The Au/AgNRs with the Ag/Au molar ratio of 0.11 maintained the 

original cylindrical rod shape. Figure S2 curve b in the Supporting Information shows the 

four plasmonic bands at 339, 400, 506, and 563 nm. The rise of two higher energy bands at 

shorter wavelengths is believed to be due to the octupolar plasmonic modes, with the peaks at 

506 nm and 563 nm corresponding to the transverse and longitudinal dipolar plasmonic 

modes.25,27,28 At higher Ag/Au molar ratios, the rod shape was no longer maintained and a 

large fraction of irregular silver shells was observed (data not shown). Only the rod-shaped 

Au/AgNRs made with the Ag/Au molar ratio of 0.11 were used in the following synthesis 

and imaging experiments. 

In order to improve the stability and reduce the intrinsic toxicity of silver, a dense 

silica layer was added as the last synthetic step. Figure 1 compares the normalized UV-Vis 

extinction spectra of AuNRs, Au/AgNRs, and Au/Ag/SiO2-NRs. In these measurements, the 

colloidal solutions were kept at the same concentration to minimize the dilution effect. Figure 

1 (inset) shows a representative TEM image of the core-shell structure with average 

dimensions of ~ 46 nm × 64 nm. Due to the relatively low lattice mismatch (0.27%) of the 

two metals, the Ag shells grow near perfectly upon the AuNRs through epitaxial deposition. 

We also found that the Ag shell thickness increases faster along the lateral direction than at 

the tips, which leads to the reduction of the aspect ratio of Au/AgNRs from the original 

AuNRs. In view of their relative extinction intensities, the longitudinal dipolar plasmonic 

mode increases by roughly a factor of 3 in Au/AgNRs compared to that of the original 

AuNRs. The baseline in the UV-Vis extinction spectrum of the Au/Ag/SiO2-NR solution is 

elevated because of scattering caused by silica, as reported previously.33 
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Following the synthesis, the Au/Ag/SiO2-NRs were imaged under a DIC microscope 

equipped with a Hamamatsu ORCA-Flash 2.8 scientific CMOS camera, which allows 

imaging at millisecond or sub-millisecond temporal resolution. In addition to the enhanced 

LSPR response from the silver coating, the blue shift of the LSPR wavelength from 632 nm 

(AuNRs) to 563 nm provides another noticeable gain in the camera’s quantum efficiency and 

therefore sensitivity. 

In our previous studies, the DIC contrasts, defined as the difference between the 

brightest and the darkest intensities divided by the average local background intensity, of 

nanoparticles were shown to be wavelength dependent and the longitudinal LSPR was more 

sensitive to the environment than the transverse LSPR.18,38 Herein, the DIC contrast of an 

immobilized, randomly oriented Au/Ag/SiO2-NR is plotted as a function of excitation 

wavelength (Figure S3 in the Supporting Information). The highest DIC contrast for this 

particle was found when a 585 ± 29 nm filter was used for illumination, which corresponds 

to the longitudinal dipolar plasmonic band. 

DIC images of two immobilized Au/Ag/SiO2-NRs on glass slides were recorded at 

different exposure times and stitched together to make Movie S1 in the Supporting 

Information, which is played at 30 frames per second (fps). These two particles in the movie 

were nearly perpendicular to each other as their DIC images showed the totally bright and 

totally dark patterns. During these measurements, the light source was kept at the maximum 

output power (100 Watts), and the overall intensity decreased linearly as expected when 

shorter exposure time was used (Figure S4 in the Supporting Information). The relative 

bright and dark intensity measurement errors were increased from ~1% at 50 ms to ~5% at 

0.5 ms for both nanorods (Table S1 in the Supporting Information). Because of the LSPR 
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enhancement due to the silver coating, the core-shell hybrid nanorods were detectable at a 

temporal resolution as fast as 0.5 ms, which is approximately an order of magnitude faster 

than the previously reported fastest temporal resolution of 2 - 5 ms.5,19 

A 360 rotation study of the Au/Ag/SiO2-NRs was carried out by rotating the sample 

stage with 10° increments to position the nanorods in different orientations while exciting at 

the longitudinal LSPR wavelength of 563 nm. The orientation angle φ was defined as the 

angle between the long axis of the nanorod and the “bright” polarization direction of the DIC 

microscope (Figure S5A in the Supporting Information). The “bright” polarization direction 

is named after the fact that a completely bright DIC image is obtained when the nanorod’s 

long axis aligns with this polarization direction (φ = 0), while the “dark” polarization 

direction corresponds to a completely dark DIC image. Figure S5B in the Supporting 

Information shows the complete rotation set of disproportionate bright and dark DIC image 

patterns. The DIC images change periodically as the nanorod’s long axis rotates against the 

polarization directions. This is in good agreement with the polarization-dependent rotation 

behaviors of plasmonic nanoparticles that have been extensively investigated in gold 

nanorods and nanowires.18,39 In view of the periodic changes, a correlation between the 

bright and dark intensity traces is observed: the bright and dark intensities increase and 

decrease in the same direction. This orientation/polarization dependence is the foundation for 

the use of Au/Ag/SiO2-NRs as SPORT probes. 

Dynamic tracking of the Au/Ag/SiO2-NRs was first performed on synthetic lipid 

bilayers. The nanorods were introduced onto the synthetic lipid bilayers in a chamber and 

bound to the membrane through non-specific interactions. Movies were recorded at a 

temporal resolution of 1 ms under 588 ± 29 nm illumination. Figure S6 in the Supporting 
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Information shows the DIC intensity traces extracted from a representative 4-s (4000 frames) 

movie. The autocorrelation analysis of the DIC bright and dark traces19 reveals that the 

nanorod’s rotation speed fluctuates constantly. Representative examples of slow and fast 

rotation are given in Figure 2. The mean relaxation times of these two cases are 0.59 s (slow) 

and 0.024 s (fast).  

To demonstrate the suitability of the new rotational probes for live-cell imaging, 

A549 human lung cancer cells were used as a model system, which provided a dynamic 

surface for rotational studies. Despite the much more complex cellular environments, the 

wavelength dependent properties of these SPORT probes are easily distinguishable from 

other cellular features by using different band pass filters. Three band pass filters (480 ± 40 

nm, 588 ± 29 nm, and 700 ± 13 nm) were used to identify the nanorods. As shown in Figure 

3, the 588 ± 29 nm filter, which covers the longitudinal LSPR band, results in a high-contrast 

DIC image of Au/Ag/SiO2-NRs that is distinct from the background. With either 480 ± 40 

nm or 700 ± 13 nm band pass filters, the Au/Ag/SiO2-NRs disappear into the background due 

to the low contrast achieved at these wavelengths, which are far away from the LSPR bands. 

In the live-cell imaging experiments, the Au/Ag/SiO2-NRs were added into a chamber 

with A549 cells attached on the coverslip. Movies of the dynamic rotation of these nanorods 

were recorded at different exposure times of 1 ms, 5 ms, and 50 ms. The DIC intensity traces 

and the corresponding sets of consecutive DIC images were plotted in Figure S7 in the 

Supporting Information. The autocorrelation analysis of the DIC bright and dark traces gives 

mean relaxation times of 11 ms at the temporal resolution of 1 ms, 23 ms at 5 ms, and 115 ms 

at 50 ms. Higher temporal resolution helps to unveil fast rotational dynamics, even though 

the overall intensity inevitably decreases as the single-frame exposure time decreases. 
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Conclusions 

In summary, we have successfully synthesized Au/Ag/SiO2-NRs with well-controlled 

size and shape for SPORT. These optically anisotropic hybrid plasmonic nanorods exhibit 

orientation/polarization and wavelength dependent behavior in DIC microscopy. With the 

enhancement of the longitudinal dipolar LSPR after silver coating, these nanorods provide 

sufficient sensitivity for detection at millisecond temporal resolution on both synthetic lipid 

bilayers and live cell membranes. Surface modification of the silica layer of the hybrid 

nanorods will enable versatile applications in SPORT. 
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FIGURES 

 

Figure 1. Normalized UV-Vis extinction spectra of AuNRs, Au/AgNRs and Au/Ag/SiO2-

NRs in water. All the spectra are normalized to the longitudinal dipolar plasmonic peak at 

632 nm. The inset is a representative TEM image of Au/Ag/SiO2-NR and the colored arrows 

indicate gold-only (green), silver-coated (red), and silica-coated (blue) samples. 
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Figure 2. Relative DIC intensity traces of (A) slow rotation and (B) fast rotation, 

corresponding to the shaded gray and green areas in Figure S5 of the Supporting 

Information. Four hundred (400) consecutive recorded DIC images for (A) and (B) are 

stitched together (from left to right and from top to bottom) and shown as (C) and (D), 

respectively. Scale bar is 5 µm. 
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Figure 3. Differentiation of the Au/Ag/SiO2-NRs (highlighted in the red circles) from other 

cellular features using three filters, (A) 480 ± 40 nm, (B) 588 ± 29 nm, and (C) 700 ± 13 nm. 

Scale bar is 4 µm. These images were taken sequentially. The nanorod and many cellular 

features changed their location and/or morphology during the imaging time.  
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Experimental Section 

Nanorod synthesis and characterization 

AuNRs were prepared according to a literature procedure with slight modification.S1 

The gold nanoparticle seeds were prepared first. Typically, 5 mL of 0.20 M CTAB (aq) 

(Sigma-Aldrich) was mixed with 50 μL of 0.02 M HAuCl4 (aq) (HAuCl4·xH2O, 49 % Au, 

Strem Chemicals) followed by the addition of 0.3 mL of ice-cold 0.01 M NaBH4 (aq) (Acros 

Organics). The seed solution was kept stirring for 2 h prior to injection into the growth 

solution. The growth solution was prepared by mixing 50 mL of 0.10 M CTAB (aq), 1.25 mL 

of 0.02 M of HAuCl4 (aq), 0.32 mL of 0.01 M AgNO3 (aq) (Strem Chemicals) and 0.36 mL 

of 0.10 M ascorbic acid (ACS grade, Alfa Aesar) aqueous solution in a sequential order. 

After the growth solution turned colorless, 60 μL of the seed solution was injected into the 

growth solution and kept static for 24 h at 30 °C. The Au/AgNRs (1.1×1011 nanoparticle/mL) 

were prepared according to a reported method.S2-3 4 mL of the gold nanorod solution was 

centrifuged and re-dispersed in 0.8 mL of 0.10 M CTAB followed by dilution to 4 mL with 1 

wt % polyvinylpyrrolidone (PVP, M.W. 3,500, Acros Organics) aqueous solution. 24 μL of 

0.01 M AgNO3 (aq), 0.30 mL of 0.10 M ascorbic acid (aq) and 0.45 mL of 0.1 M NaOH (aq) 

(Fisher Scientific) were added in order and reacted for 2 h. For the thin silica coating, a 

reported two-step silica coating method was employed.S4  To a 2 mL of the Au/AgNRs 

solution, 20 μL of 2 v/v % ethanolic 3-mercaptopropyl trimethoxysilane (MPTMS) (Gelest) 

solution was added, and the mixture was kept stirring for 45 min. 40 μL of 0.54 % sodium 

silicate (Na2O(SiO2)x·xH2O, 27 %, Sigma-Aldrich) solution was then added, and the solution 

was kept stirring for 4 days. Excess reactants were separated by centrifugation, and the 
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Au/Ag/SiO2-NRs were re-dispersed in deionized water to a final concentration of 2.2×1011 

nanoparticle/mL for further use. 

Transmission Electron Microscopy (TEM) was measured on an FEI Tecnai G2 F20 

field emission scanning transmission electron microscope at 200 kV (point-to-point 

resolution < 0.25 nm, line-to-line resolution < 0.10 nm). UV-Vis extinction spectra were 

collected with a photodiode-array Agilent 8453 UV−Vis spectrophotometer. 

 

Synthetic lipid bilayer preparation and cell cultures 

The phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, Avanti 

Polar Lipids) solution (20 μL, 25 mg/mL) in chloroform was gently dried by nitrogen and 

then vacuum dried at least 3 h at room temperature to remove the residual chloroform. The 

final POPC concentration was brought to 0.5 mg/mL by adding 1 mL phosphate buffered 

saline (1x PBS, pH 7.4). After rehydrating in PBS for 30 min with vortexing, cloudy 

multilamellar vesicles suspension solution was obtained. The suspension solution was 

extruded through a polycarbonate membrane (100 nm pore size, WHA110405, Sigma-

Aldrich) at least 21 times to form the large unilamellar vesicles solution by a mini-extruder 

(Avanti Polar Lipids, Alabaster, AL). The resulting solution was kept at 4°C. After 

incubating the unilamellar vesicle solution in a chamber, made by a cleaned glass slide, two 

double-sided tapes and a cleaned 22 mm × 22 mm No. 1 glass coverslip (Corning, NY), for 

10 min, the planar bilayer was formed. Then the excess lipids were washed by PBS. 5 μL of 

the original Au/Ag/SiO2-NRs solution was added on one side while a piece of filter paper 

was applied on the other side of the chamber to help the nanoparticles to diffuse and disperse 

onto lipid bilayers. 
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A549 human lung cancer cells (ATCC, CCL-185) were cultured on glass coverslips 

in Petri dishes with F-12K Medium (Kaighn's Modification of Ham's F-12 Medium, ATCC, 

30-2004) supplemented with 10 % fetal bovine serum. The cell culture was incubated at 

37°C under 5 % CO2 to an appropriate confluence. Before imaging, the coverslip with cells 

was rinsed with PBS and formed a chamber with two pieces of double-sided tape and glass 

slide. Au/Ag/SiO2-NRs solution was centrifuged and resuspended in PBS to the same 

concentration before adding into chamber. The same procedure was used as for lipid bilayer 

study and filter paper was used to facilitate the dispersion of nanoparticles onto cell 

membranes. 

 

Imaging system 

An upright Nikon Eclipse 80i microscope was used in this study. The DIC mode used 

a pair of 100×II-R Nomarski prisms, a 100× Plan Apo/1.40 oil-immersion objective, a NA 

1.40 oil condenser and a halogen lamp as light source with maximum output power of 100 

Watts. Appropriate filters were inserted in the light path. In order to facilitate single particle 

characterization and to minimize inter-particle SPR coupling, the original Au/Ag/SiO2-NRs 

solution (2.2×1011 nanoparticle/mL) was diluted 3 times in deionized water, and then 6 μL of 

the diluted solution was added onto a glass slide to control the nanoparticle concentration to 

1 μm-2. The images and movies were taken by a Hamamatsu ORCA-Flash 2.8 CMOS camera 

and analyzed using MATLAB and NIH ImageJ. 
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Supporting Figures 

 

 

Figure S1. TEM image of (A) AuNRs and (B) the size distributions based on TEM images. 
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Figure S2. UV-Vis extinction spectra of synthesized nanoparticles. (a) AuNRs and the 

Au/Ag core-shell nanoparticles with Ag/Au molar ratios of (b) 0.11, (c) 0.22, (d) 0.34. As 

shown in the inserted figure, the longitudinal LSPR of AuNRs shifted from 632 nm to 563 

nm, 537 nm and 503 nm after the addition of silver layer. 
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Figure S3. DIC contrast spectrum of an immobilized, randomly oriented Au/Ag/SiO2-NR on 

a glass slide. Data points were determined by the availability of band pass filters. Each DIC 

image corresponding to the closest data point in the plot and the image contrast are 

normalized to their local maximum and minimum intensities. The edge length of each square 

is 1.45 µm. 
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Figure S4. DIC intensity changes upon changing the exposure time. Bright 1 and Dark 1 

correspond to the nanoparticle on the left in movie S1 and Bright 2 and Dark 2 are for the 

nanoparticle on the right. The inset is a zoom in of the squared area on the low exposure part 

of the main plot, magnified for better clarity.  

 



www.manaraa.com

54 

 

 

Figure S5. 360° rotation of Au/Ag/SiO2-NR immobilized on a glass slide. (A) Definition of 

orientation angle φ with respect to the polarizer and analyzer positions in Nikon Eclipse 80i 

microscope setup. (B) 36 DIC images of Au/Ag/SiO2-NR during 360° rotation from 0° to 

360° with an interval of 10°. Scale bar is 5 µm. (C) Relative DIC intensity traces of the bright 

and dark signals in (B). 
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Figure S6. Relative DIC intensity traces of Au/Ag/SiO2-NR rotating on synthetic lipid 

bilayer surface and recorded at 1 ms temporal resolution for 4000 frames. 
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Figure S7. DIC intensity traces of Au/Ag/SiO2-NRs rotating on cell membrane and recorded 

at (A) 1 ms, (B) 5 ms, and (C) 50 ms and their corresponding consecutive DIC images (D), 

(E) and (F). Scale bar is 5 µm. 
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Movie S1. Recorded DIC images of two Au/Ag/SiO2-NRs immobilized on glass slides at 

different exposure times, and played at 30 fps. Scale bar is 2 µm. 

Downloading Link: 

http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.5b00604/suppl_file/ac5b00604_si_002.a

vi 

 

Table S1.  Relative bright and dark intensity measurement errors of the both Au/Ag/SiO2-

NRs in movie S1. Bright 1 and Dark 1 corresponding to the nanoparticle on the left in movie 

S1 and Bright 2 and Dark 2 are for the particle on the right.  

 

 

Supporting References 

(S1) Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957-1962. 

(S2) Liu, M.; Guyot-Sionnest, P. J. Phys. Chem. B 2004, 108, 5882-5888. 

(S3) Khalavka, Y.; Becker, J.; Sonnichsen, C. J. Am. Chem. Soc. 2009, 131, 1871-1875. 

(S4) Sendroiu, I. E.; Warner, M. E.; Corn, R. M. Langmuir 2009, 25, 11282-11284. 

 

 

http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.5b00604/suppl_file/ac5b00604_si_002.avi
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.5b00604/suppl_file/ac5b00604_si_002.avi


www.manaraa.com

58 

CHAPTER 3 

FIVE-DIMENSIONAL TRACKING OF CARGO IN LIVE CELLS 

 
 

Abstract 

 

A novel single particle tracking (SPT) technique has been developed to visualize the 

intracellular transport of cargos in five dimensions (5D): the three spatial coordinates (x, y, z) 

and two orientation angles (azimuthal angle  and elevation angle ) of a probe’s transition 

dipole over a series of time steps. Tracking rotational probes, such as gold nanorods, in the z-

axis is challenging because translational motions in the z-axis can be easily confused with 

rotational motions as both types of motion result in similar changes in signal intensity. The 

5D-SPT method overcomes this long-standing challenge by utilizing the concept of parallax 

to sense the axial movement of the target object and employs an automatic feedback loop 

algorithm to control the objective’s focal plane and bring the target object back to focus 

repetitively. In such an implementation, the target object is kept in focus to provide the 

highest possible S/N for 2D localization and orientation determination, while the z positions 

are recorded from the vertical movement of a high-precision objective scanner. Through the 

live-cell SPT experiments, we demonstrate that the 5D-SPT technique has potential to 

significantly improve the capacity to study the intracellular transport of cargos in a cellular 

environment.  

Introduction 

 

Single particle tracking (SPT) has become an indispensable approach in our attempts 

to understand the detailed working mechanisms of biomolecules in complex cellular 

environments.1 Motions of single imaging probes recorded in SPT experiments contain rich 
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information in multiple dimensions, including the x, y, z coordinates and the two orientation 

angles (azimuthal angle  and elevation angle  , as defined in Figure 1) of the probe’s 

transition dipole over a series of time steps. It has been highly challenging to acquire accurate 

measurements in all of these five dimensions (5D: x, y, z, , ) simultaneously.  

The challenges are mainly three-fold: (i) It is difficult to resolve the dipole orientation 

of single fluorescent probes in a cellular environment at reasonably fast temporal resolution 

due to the well-known limitations, such as high background and fast photobleaching; (ii) 

Even though lateral super-localization of single fluorescent molecules with nanometer 

accuracy2-4 in the (x, y) plane has become routine, high-accuracy tracking in the axial (z) 

direction is still considerably more difficult. Many strategies have been developed in the past 

decade to improve the z-tracking ability, including multifocal plane microscopy,5-7 defocused 

imaging,8-10 double-helix point spread function  microscopy,11,12 scanning-angle total internal 

reflection fluorescence microscopy,13-15 astigmatism imaging,16,17 and parallax-based 

imaging.18,19 However, an improvement in axial localization often accompanies a reduced 

accuracy in lateral localization because the movement in the z axis leads to out-of-focus 

images with much reduced signal to noise ratios (S/N). (iii) Translational motions in the z 

axis can be easily confused with rotational motions as both types of motion result in similar 

changes in signal intensity.  

The first challenge can be circumvented by using anisotropic plasmonic gold 

nanorods as alternative rotational probes. The exceptionally high absorption and scattering 

cross-sections of gold nanorods result in strong and stable signals at the localized surface 

plasmon resonance (LSPR) wavelengths. We have previously developed the single particle 

orientation and rotational tracking (SPORT) technique for direct visualization of rotational 
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dynamics of gold nanorods in differential interference contrast (DIC) microscopy at 

millisecond temporal resolution, while still obtaining high-contrast images of cellular 

features.20-23 Relatively low illumination light intensity from a typical halogen lamp, instead 

of a stronger laser light source,24 brings minimal disruptions to cell functions, making it 

particularly suitable for long-term SPT experiments in live cells. Several modifications of the 

DIC microscope have also been reported to adapt the SPORT technique for dual-modality 

(fluorescence and DIC) imaging25 and simultaneous 2D localization and rotational tracking.26  

The current report introduces the first high-speed 5D-SPT method to overcome both 

the second and third challenges. The core idea is to combine the DIC microscopy-based 

SPORT technique with the principle of parallax microscopy18,19 for simultaneous spatial and 

rotational tracking. In parallax microscopy, either a prism18 or a set of mirrors19 is inserted 

into the emission light path to split the light evenly into two paths of slightly different angles 

(similar to two eyes of a human being with slight different viewing angles to generate the 

depth perception), and therefore, two spots are produced on the camera for a single imaging 

probe. This strategy converts a probe’s movement in the z direction into lateral movement of 

the two spots.  

The new 5D-SPT method uses parallax to sense the axial movement of the target 

object and employs an automatic feedback loop algorithm to control the objective’s focal 

plane and bring the target object back to focus repetitively. In such an implementation, the 

target object is kept in focus to provide the highest possible S/N for high-accuracy 2D 

localization and orientation determination, while the z positions are recorded as the vertical 

positions of the high-precision objective scanner.  
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To demonstrate the power of the 5D-SPT method, we study the intracellular transport 

of cargos in live cells. The cytoskeleton is a complex organization composed of interweaving 

microtubules and actin filaments. Motor proteins including kinesins, dyneins and myosins 

carry cargos along the cytoskeleton tracks. After several decades of intensive studies 

dominated by in vitro assays,27-30 direct visualization of cargo transport in live cells has 

become a much more important approach to understand the transport mechanisms in a 

cellular environment.22,25,31-33 The importance of live-cell experiments was further 

demonstrated recently in a finding that the crowded cellular environment significantly 

impacts the motor-driven motility of early endosomes.34 Live-cell intracellular transport 

studies can be greatly benefited from this and other recently developed optical imaging 

techniques. The original SPORT techniques have been employed to visualize the transport of 

nanorod-containing vesicles,22,25 however, the vertical information was missing in those 

studies. Lakadamyali et al. reported the track-switching of lysosomes on the microtubules 

whose 3D structures were resolved in 3D stochastic optical reconstruction microscopy (3D 

STORM);35 however, the lysosomes were only tracked in 2D while no rotational information 

could be obtained. Using the 5D-SPT technique reported here, it becomes possible to reveal 

much more detailed motions of cargos and their transport trajectories. 

 

Results and Discussion 

Design of parallax-DIC microscopy 

Parallax is realized on an upright DIC microscope by inserting a wedge prism at the 

objective’s back focal plane (Figure 2A). Half of the light that has passed through the sample 

maintains the original path, while the other half of the light is deviated slightly by the wedge 
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prism. Two images of the same sample are formed in the upper and lower halves of the 

sensor area. These images will be referred to as “half-plane” images in the rest of the 

discussion because each image utilizes half of the numerical aperture of the objective, while 

conventional microscopy images utilizing the full numerical aperture will be referred to as 

“full-plane” images. 

The movement of a target object, e.g., a lipid vesicle or a gold nanorod, in the axial 

(z) direction is resolved by monitoring the distance d between the pair of half-plane images 

of the same object. For any object in the focal plane, the distance between its two half-plane 

images (d0) is a fixed value determined by the angle between the wedge prism’s surfaces. 

When the target object moves upwards (Δz > 0) towards the objective, the two half-plane 

images move away from one another to increase d. When the target object moves downwards 

(Δz < 0) away from the objective, the two images move toward one another to shorten d. 

Movie 1 shows parallax-DIC images of a stationary gold nanorod at three orientations 

traveling smoothly from -0.4 m below the focal plane to +0.4 m above the focal plane at a 

speed of 100 nm per second with a single frame exposure time of 200 ms. The nanorod 

shows orientation-dependent DIC images (Figure 2B).  

The parallax-DIC microscope inherits the advantages of conventional DIC 

microscopes for single cell studies, including the ability of visualizing the cell morphology 

and detailed intracellular structures while tracking the plasmonic nanoprobes. Figure S1 

shows the two half-plane cell images change from partial overlap to complete separation 

during a vertical scan. The overlapped region should be avoided in picking target objects to 

ensure high reliability and sensitivity in the 5D-SPT experiments.  
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Localization in parallax-DIC microscopy 

In parallax-DIC microscopy, a target object’s movement in the axial direction will 

cause its two half-plane images to move an identical distance in the opposite directions. 

However, the middle point of the line connecting the centers of the pair of images will 

remain unchanged unless the target object undergoes lateral movement. Therefore, 

localization in the (x, y) plane can be translated into a problem of finding this middle point 

through high-accuracy localization of the pair of half-plane images. 

Gaussian fitting, the most widely used localization method, is not suitable for 

superlocalization in DIC microscopy because the anti-symmetric DIC point spread function 

(PSF), which consists of apposed bright and dark portions over a gray background, cannot be 

fitted with a simple mathematical function. Therefore, the more complicated model-based 

correlation mapping procedures are required for localizing particle probes in DIC 

microscopy.27,36 Localization in parallax-DIC microscopy is even more challenging as the 

half-plane PSF appears to be stretched in the direction perpendicular to the split plane 

(Figure S2).  

To overcome the complications in the parallax-DIC PSF, we have implemented a 

redesigned correlation mapping procedure, in which one of the half-plane images is used as 

the model to map the other image in order to find the centers of these two images and then 

the middle point. With the wedge prism splitting the light in half, the two resulting half-plane 

PSFs are distorted in the way that one appears to be the mirror image of the other. The 

correlation maps of the two half-plane images with correlation scores above a set threshold 

(typically 0.4 - 0.6) are weighed to find their relative coordinates. The distance between the 

two images and the position of the middle point are thus determined.  
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The axial position of a target object is determined from the distance between the two 

half-plane images. The axial localization is calibrated by scanning the focal plane of the 

objective vertically in 20 nm steps through the stationary gold nanorods and correlating the 

distance between the two images with the axial position of the sample. Each data point on the 

calibration curve (Figure 2C) is the average distance between the two half-plane images as 

the nanorod is rotated 180 in 5 intervals. The distance between the two images falls in a 

linear relationship with the axial position of the gold nanorod when the vertical displacement 

is within the displayed range of -0.5 μm to +0.5 μm relative to the focal plane. For the current 

setup, the calibration curve returns a slope of +0.626 (d/Δz). The precision measurements of 

the 3D localization yield standard deviations of 11 nm, 14 nm and 17 nm in the x, y, and z 

axes, respectively (Figure 2D-F).  

It should be noted that the two half-plane images are not identical. The image formed 

through the wedge prism is slightly longer along the direction perpendicular to the split plane 

than the other image formed in the original light path of the microscope. Furthermore, it is 

challenging to place the wedge prism at the perfect position to split the light exactly in half, 

which results in small variances in the relative intensities between the two half-plane images. 

Nonetheless, the subtle differences in image intensity and shape do not significantly affect 

the accuracy of the correlation mapping procedure, as shown in Figure 2C that the distances 

between the two half-plane images are remarkably consistent for the entire angle range of 0-

180. Using a set of mirrors instead of a wedge prism has been demonstrated to be more 

flexible and precise to achieve parallax in fluorescence microscopy;19 however, the presence 

of two Nomarski prisms makes the mirror-based design much more difficult to realize on a 

commercial DIC microscope.  
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A common concern of the high-accuracy localization of a transition dipole is 

associated with the asymmetric emission/scattering intensity distribution when the dipole is 

titled relative to the horizontal plane.37,38 As a result, the Gaussian fitted image center may 

not overlap with the actual geometric center of the probe. It is important to note that this type 

of localization error (on the order of a few tens of nanometers) is critical for the localization 

of stationary imaging probes where nanometer precision is often required.39 However, for the 

dynamic SPT experiments where nearly everything is moving constantly, these small 

localization errors can be neglected without noticeably affecting the recorded 3D trajectories. 

 

Auto-focusing system for simultaneous 3D localization and rotational tracking 

The azimuthal angle  is defined with respect to the dark polarization direction in the 

DIC microscope, which implies the brightest image at 90 and the darkest image at 0. When 

a gold nanorod is rotated from 0-180, the in-focus half-plane DIC images display periodic 

pattern and intensity changes (Figure S3) similar to those in conventional DIC microscopy,20 

even though the half-plane DIC images are elongated compared with the full-plane DIC 

images. Therefore, the relative DIC intensities of the bright part and the dark part can still be 

used to calculate the orientation angles (, ) of the gold nanorod as reported in our previous 

work.20 

Defocusing not only results in lower signal intensities but also causes wavefront 

phase disturbances that lead to changes in the DIC image patterns, and therefore, it can 

negatively impact the accuracy in both localization and orientation determination. Our 

solution to this problem is to keep the target gold nanorod in focus throughout the entire 

trajectory.  An automatic feedback focusing system has therefore been developed as a plugin 
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for Manager40,41 for the parallax-DIC microscope so that the high-precision objective 

scanner can move the focal plane of the objective to compensate for the vertical movement of 

the target object detected from the distance between the two half-plane images. At the same 

time, the tracking program outputs the distance the objective scanner travels in each feedback 

loop, allowing the relative vertical positions from the initial position of the nanorod to be 

recorded in real time.  

The performance of auto-focusing was first evaluated by the auto-focusing feedback 

capacity with respect to the stage movements. The microscope sample stage was coupled to a 

motorized rotation stage through the microscope fine adjustment knob. With the auto-

focusing tracking program on, the objective scanner moved accordingly depend on the stage 

movement.  The z axial position of the objective scanner increased to compensate the z axial 

displacement to keep the target nanoparticle in focus when the stage was moved down by 

motorized rotation stage. In contrast, the z axial position of the objective scanner decreased 

when the stage moved up. In this situation, objective position was also automatically adjusted 

by the tracking program to make up the z axial change and the nanoparticle of interest stayed 

in focus. Figure S4 shows the response of objective scanner when the stage was moved 

toward different directions with different speed. The immobilized gold nanorod sample was 

first found by manual adjusting to a relatively clear image, and then the auto-focusing 

tracking was initiated to target a specific nanoparticle. When the sample stages was moved at 

500 and 1000 steps per second (0.35 and 0.70 μm/s) toward both directions, the auto-

focusing feedback was fast enough to adjust the objective scanner accordingly as indicated 

from the perfect linear fitting in the figure. The slopes were 0.078 and 0.1489 when the 

sample stage was moved down with respect to objective. And the slopes were -0.074 and -
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0.1462 when it was moved upward. The coefficient of determination (R2) of these fittings 

were all larger than 0.99. The response of the auto-focusing tracking speed toward 0.70 μm/s 

z axial movement speed is far than enough to track most of the cellular processes. Also, the z 

axial tracking range is not restricted by the depth of field of the objective (several μm) but 

rather is limited by the travel distance of the objective scanner (100 μm). This enables z 

tracking throughout the entire thickness of any kinds of mammalian cells. 

The robustness of the auto-focusing scheme was further demonstrated by tracking 

lipid vesicles in live cells. These vesicles are generally spherical and exhibit nearly constant 

DIC intensities and image patterns when they are in focus. Figure S5 and Movie 2 show 

such an example in a live A549 human lung cancer cell. The total vertical movement range is 

up to ~200 nm as shown in the 3D trajectory. The relative bright and dark DIC intensities and 

the contrast of the vesicle remained nearly constant regardless of the vertical movement. The 

response delay of the objective scanner used in the current setup has limited the temporal 

resolution to 50 ms. On average, the position of the objective scanner is adjusted every 100 

ms (or 2 frames). The objective scanner keeps dragging the target object back to focus as 

long as it does not move too fast vertically.  

 

5D tracking of gold nanorod-containing vesicles in live cells 

The 5D-SPT technique enables us to reveal much detailed motions of early 

endosomes in live cells. We have demonstrated previously that gold nanorods are excellent 

reporters of translational and rotational motions of early endosomes.22 A similar strategy was 

applied in the present study.  
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Gold nanorods with average dimensions of 40 nm width by 80 nm length were 

surface-modified with transferrin, an iron-binding blood plasma glycoprotein with specific 

receptors in the cell membrane,42 which can promote the clathrin-mediated endocytosis 

pathway.43 Within the first 45 min following the cellular uptake, the endocytosed substances 

mostly reside in early endosomes that are about 50-100 nm in diameter.44,45 As discussed 

extensively in our previous publication,22 the transferrin-modified gold nanorods are bound 

to the membrane receptors and tightly wrapped by the vesicle membranes. These nanorods 

generally lose the independent rotational freedoms relative to the vesicles; therefore, they can 

be used as rotational reporters of early endosomes being transported by kinesin and dynein 

motors.  

In the present study, we recorded the motions of nanorod-containing vesicles in living 

A549 human lung cancer cells under the parallax-DIC microscope. An example of the lateral 

and vertical displacements along with the DIC intensities of a gold nanorod is shown in 

Figure 3 and Movie 3. The random but confined rotational motions of the cargo within the 

first second likely reflect the process of the cargo searching for a cytoskeleton track. Starting 

at ~1.0 s, the cargo moves nearly straight along the z-axis and returns at 2.1 s, suggesting a 

possible back-and-forth movement along a track that is perpendicular to the image plane. 

Then the cargo makes a big turn during a pause lasting from 2.1-2.9 s, followed by lateral 

movement of more than 5 m in the last 2 s of the recording. The big turn is likely due to the 

cargo switching from the perpendicular track to a horizontal one. The cargo also undergoes a 

fast reversal (going back and forth) at 3.0 s, while the rotational behaviors of the nanorod can 

be observed, possibly because of the rearrangement of motors during which the tension on 

the cargo is weakened.22 These observations combine to render a complete process of cargo 
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transport inside a living cell with great details: cargo searching for a track, directional 

transport, track-switching, and pauses. Two additional examples are shown in Figure S6 and 

S7 (Movies 4 and 5). 

An interesting sequence of movement is observed at 3.6-5.0 s in Figure 3, when the 

cargo changes its moving direction laterally and vertically, accompanied by changes in its 

orientation. The vertical displacements are in the range of 100-160 nm, in good agreement 

with the span of the 80 nm long gold nanorod when it tumbles around a microtubule track of 

~25 nm in diameter. Combined with the moving trajectory shown in Figure 3B, it suggests 

that the cargo moves along the microtubule track with a twisted up-and-down motion. This 

phenomenon may be ascribed to microtubule bending (a curved conformation of the tubulin 

dimers).46,47 Another possible cause is the steric hindrance induced by the crowded cellular 

environment: the cargo may navigate around a big obstacle or the microtubule may be forced 

to change its shape.  

Conclusions 

In summary, a parallax-DIC microscope and accompanying tracking program have 

been developed to realize automatic 5D-SPT in live cells. The axial movement of gold 

nanorod probe is detected by monitoring the distance between two half-plane images 

generated with a wedge prism. A vertical precision of 17 nm has been achieved.  

As demonstrated through the live-cell SPT experiments, the 3D trajectories and DIC 

intensities incorporating rotational information of gold nanorod-containing vesicles can be 

correlated to elucidate the intracellular transport events in unprecedented detail, which makes 

the 5D-SPT technique a promising tool to shed new light on the working mechanisms of 

molecular motors in live cells.  
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A unique trait of the 5D-SPT technique is that the recorded moving traces reflect the 

3D organization of the cytoskeleton tracks inside the cell. Although the current setup does 

not allow the visualization of the 3D structures of the cytoskeleton, it is promising that the 

5D tracking of intracellular transport can be combined with super-resolution imaging of 

cytoskeleton structures35 so that the transport mechanism of cargos can be better elucidated. 

Another critical step in the future is to combine the 5D-SPT of plasmonic nanoparticle probes 

with the fluorescence imaging of associated proteins, such as tau48-50 and dynactin51, to 

understand the regulated intracellular transport at the molecular level.  

 

Experimental Section 

Parallax DIC microscopy 

The Nikon Eclipse 80i upright microscope used in the present study was equipped 

with a set of Nomarski optics (including two Nomarski prisms, two polarizers, and a quarter-

wave plate), an oil immersion condenser with a numerical aperture (NA) of 1.40, a 100 Plan 

Apo/1.40 oil immersion objective, and a Hamamatsu Scientific CMOS ORCA-Flash 2.8 

camera. A 650 nm (± 13 nm) bandpass filter (Semrock, Rochester, NY) was inserted into the 

light path. A wedge prism (0.5 wedge angle deviation, Edmund, Barrington, NJ) was placed 

at the objective’s back focal plane, which is at the filter insert position right above the 

objective and the second Nomarski prism of the DIC microscope. The position of the wedge 

prism was carefully adjusted to split the light in half. The two resulting half-plane images 

should be of similar intensities and share the same x coordinates. 
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Correlation mapping and calibration of z-localization 

Gold nanorods with average dimensions of 40 nm width by 80 nm length were 

purchased from Nanopartz (Loveland, CO). They were washed twice with 18.2 mΩ Milli-Q 

water and diluted to ~5108 particles/mL. The diluted solution was sonicated for 15 min at 

room temperature and then added onto a pre-cleaned glass coverslip. The particles were 

adsorbed onto the coverslip via electrostatic interactions. The coverslip was then sealed with 

clear nail polish to prevent evaporation.  

An objective scanner was installed on the microscope, mounted with the 100 Plan 

Apo/1.40 oil immersion objective, and connected with a Piezo position servo controller 

(Physik Instrumente, Model E-710). Movies of the vertical scans of the fixed gold nanorods 

were taken while the camera and the objective scanner were synchronized at 200 ms per 

frame and per step of movement. The step size of the vertical scan was 20 nm.  

The z-position of the gold nanorods was calibrated against the distance between the 

two half-plane DIC images of a single gold nanorod. The distance between the two DIC 

images was measured using the correlation mapping method. At each z-position, one of the 

half-plane images was used as the model to map both of the two images. The model image 

was cropped and overlaid with the region of interest (ROI) that includes both images, and 

moved pixel by pixel and line by line to cover the entire ROI. At each position, a correlation 

score in the form of Pearson’s correlation coefficient was calculated as  

   model model sub-ROI sub-ROI

1 model sub-ROI
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where the summation covers all the pixels in the model or the sub ROI, m is the total number 

of pixels in the model, I is intensity, avg and σ denote the average and standard deviation of 

the intensity in the model or the sub-ROI, respectively. By weighing the p values above a 
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threshold of the region that the image of the particle covers, the center of the particle can be 

determined as 

 
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where X denotes either x or y in the calculation, and the threshold is applied to cut off the 

background noise. The center coordinates of the two nanorod images, (x1, y1) and (x2, y2) are 

thus determined. For the highest possible accuracy, the prism inserted into the light path of 

the microscope should be well aligned so that the two images were not shifted horizontally. 

The distance between the two images is: 

2 1d y y  . 

The calibration curve of the distance d as a function of z is thus obtained from the vertical 

scans where each data point is the average value obtained from the gold nanorod placed at 36 

orientations (0-180 with 5 intervals). The calibration data (Fig. 2) results in a good linear 

fitting going through (0, 0), which refers to the vertical position of the nanorod in focus. 

Both correlation mapping and calibration of z-localization were compiled as 

manager plugin in the auto-focusing tracking program. So movies (in TIFF) of the tracking, 

(x, y, z) relative spatial localization, and DIC bright and dark intensity traces were generated 

by the tracking program. 

 

Computer simulation of full-plane and half-plane DIC images 

Computer simulation of the full-plane and half-plane PSFs of a gold nanorod was adapted 

from the simulation of the Parallax images of a point source.19 The simulation is based on the 
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simplified model that assumes the incident light from a point emitter produces a band-limited 

version of Fourier transform of a delta function in the back aperture of the objective. In this 

model, the amplitude and phase of the function keeps constant inside the circular sub-region, 

while jump to zero outside. The wavefront phase disturbance due to the defocusing of the 

gold nanorod ΔZ is in the form of  

22 [ ( )]r Z f f Z   , 

where λ is the wavelength, f is the focal length, and r is the radial distance from the optical 

axis. The wavefront phase disturbance is then added to the Fourier transform. The sum, 

which represents the phase component, is combined with a constant amplitude component to 

generate an approximation to the defocus-aberrated pupil function at the back aperture of the 

objective for the full-plane image. For the half-plane image, the transform was set to zero in 

the negative y half-plane. The square of the modulus of the Fourier transforms of these 

distributions yields the model PSF distributions of the simulated scattering image pattern.  

        The lateral scale for the simulated PSFs is defined by assigning the radius at the first 

minimum of the in-focus PSF a value of  

 0.61/ effective NA
r


 . 

        The axial scale is defined by assigning the magnitude of defocus at the first axial 

minimum of the PSF a value of  

22 / ( sin )
Z

n 



 . 

where n is the refractive index of the medium surrounding the point object, and α is the 

objective lens acceptance half-angle. 



www.manaraa.com

74 

        The DIC images are then generated by integrating the scattering amplitude PSF into the 

DIC PSF52:  

( , ) (1 )exp( ) ( , ) exp( ) ( , )h x y R j k x x y y R j k x x y y           , 

where 2Δx and 2Δy are the shear introduced by the Nomarski prism along the x and y axes 

respectively, 2Δ is the bias retardation, where R determines the relative amplitude of the two 

wavefronts, and k(x, y) is the amplitude PSF for the optics under coherent illumination. All 

the simulation figures were generated by using MATLAB. 

 

Surface modification of gold naonrods 

The purchased gold nanorods (40 nm × 80 nm) were stabilized in 

cetyltrimethylammonium bromide (CTAB) solution. Before used in our experiments, the 

gold nanorods were centrifuged and resuspended in Millli-Q water twice to remove most of 

the CTAB. The gold nanorods were then surface modified with transferrin through a PEG 

linker by following the procedure described below: 1 mL of the gold nanorod solution 

reacted with 20-mM N-hydroxylsuccinimide (NHS)-polyethylene glycol (PEG)-thiol 

(Sigma-Aldrich, St. Louis, MO) for 1.5 hrs. After that, the gold nanorod colloidal solution 

was centrifuged and resuspended in 18.2 Ω Millli-Q water again to remove excess NHS-

PEG-thiol. 20 µL of 2 mg·ml-1 transferrin in phosphate buffer saline (pH 7.4) was added to 

the gold nanorod solution and let react for 3 hrs. The gold nanorods were then centrifuged 

and resuspended in Millli-Q water before use. The concentration of the gold nanorod solution 

was 9×1010 nanoparticles/mL. 

 

http://en.wikipedia.org/wiki/Cetyl_trimethylammonium_bromide
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Cell culture 

A549 human lung cancer cells (ATCC, CCL-185) were cultured on 22 mm  22 mm 

poly-lysine coated glass coverslips in 35-mm petri dishes. Minimum essential cell culture 

medium (ATCC) supplemented with 10% fetal bovine serum supplement was added to the 

plates. The cell culture was incubated at 37C under 5% CO2. After the cell culture covered 

70% of a coverslip, 40 μL of the transferrin modified gold nanorod solution (2.62  1010 

particles/mL) was added to the cell culture and incubated for 45 min at 37C under 5% CO2 

for the gold nanorods to be taken up by the cells. The coverslip was then rinsed with fresh 

cell culture medium and placed on a clean glass slide. Two pieces of double-sided tape 

served as spacers between the glass slide and the coverslip to form a chamber. 30-50 L of 

the cell culture medium was added into the chamber to keep the cells from drying out and to 

provide the cells with nutrition.  

3D localization of gold nanorods 

The lateral position (x, y) of the gold nanorod is determined as the midpoint of the 

line connecting the centers of the two images. The z coordinate is obtained by fitting the 

measured distance between the two images of the gold nanorod into the calibration curve.  

        To measure the 3D localization precision of gold nanorods with random orientation, 

gold nanorods were dispersed in agarose gel. The gel matrix was made by dissolving agarose 

powder (Sigma) in 18.2 m milli-Q water (2% w/w) and heating the mixture for 5 min in a 

water bath. 50 μL of the 40 nm  80 nm gold nanorods (Nanopartz) was added to 1 mL of the 

gel when hot and the mixture was vortexed vigorously and spin-casted onto a pre-cleaned 

glass slide and covered by a glass coverslip. The sample slide was then cooled down and 
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brought under the Parallax-DIC microscope and particles at different depths were imaged. A 

cluster of localization was obtained for each particle by determining the position of the 

particle in 10 frames of images. The overall 3D localization distribution was then generated 

by overlapping the center of mass of the localization clusters of 155 gold nanorods. Standard 

deviations in the x, y, and z directions are thus obtained by fitting the distribution histogram 

of localization with Gaussian functions. These results are shown in Figures 2E-G.  

 

5D-SPT with auto-focusing 

The objective scanner is set to "idle" before the camera starts to record the movies. 

The objective is adjusted by the user to bring the nanoparticle in focus. The initial 

coordinates of the target particle are defined by the user by clicking at the center of the upper 

half-plane image. Because the target object keeps moving in live cells, this procedure needs 

to be done quickly in time before the nanorod moves out of focus. The click on the screen 

initiates both the tracking algorithm and the recording function of the camera. Using the 

initial coordinates as the center, the tracking program defines a 7 × 7 pixel square. A hollow 

region is formed by framing a smaller square (4 × 4 pixel) inside the big square. The small 

frame is moved pixel by pixel inside the big square until the biggest difference between the 

mean intensity of the small square inside of the frame and the hollow region is found, where 

the small square covers the pixels of the highest contrast constituting the half-plane image of 

the gold nanorod. The sizes of these squares are chosen to achieve the accurate localization 

within a time duration that is much shorter than the moving speed of the objective scanner.  

The distance between the two half-plane images when the nanoparticle is in focus is 

measured as d0. At a distance of d0 from the first half-plane image, the estimated position of 
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the second half-plane image is defined. The 4 × 4 pixel small square that covers the first half-

plane image is then moved pixel by pixel to cover both itself and the second half-plane image 

of the nanorod, and two correlation maps are generated. The distance between the centroids 

of the two correlation maps is then compared with d0 and the difference is converted to the 

vertical distance from the focal plane.  

            The auto-focusing algorithm is realized via the objective scanner controlled by the PI 

Controller E710. The command is delivered through RS232 interface to the PI Controller and 

the stage is moved when the status of the objective scanner is detected to be idle. In the same 

way, the distance between the two half plane images in the next frame after the objective 

finishes moving is calculated and the distance which the objective should move is 

determined, and so on until the camera stops recording. The frame number and the distance 

the objective scanner travels at the corresponding frames are recorded and output in a text 

file. The x and y positions of the gold nanorod are determined as the middle point between 

the two half-plane images of each frames by the correlation mapping and weighing method.  

To reduce the error caused by the time delay of the adjustment of the objective scanner, the 

actual vertical position is retrieved as the distance the objective scanner moved from the last 

frame plus the relative vertical position of the nanorod converted from the distance between 

the two half-plane images of the current frame. The bright part and dark part intensities of the 

top half-plane image are recorded. All the data analyses were carried out by running 

programs written in MATLAB. 
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Evaluation of the performance of the auto-focusing 

The fine adjustment knob of the Nikon i80 microscope was connected to a motorized 

rotation stage (Sigma Koki, SGSP-60YAM). An Intelligent Driver (Sigma Koki, CSG-602R) 

was used to control the motion of the motor, thus control the up and down motion of the 

microscope sample stage. In this part, an immobilized gold nanorod sample was prepared by 

adding about 5 μL of the above-mentioned 40 × 80 nm gold nanorod solution between a 

cleaned glass slide and a coverslipe and sealed all the edges by nail polish. Manual 

adjustment was first performed to find a clear image before starting the tracking program. 

After the tracking program was switched on, the auto-focusing function will adjust the 

objective scanner to the optimal position to keep the nanoparticle of interest in focus. When 

the motorized rotation stage was initiated to move the sample stage up or down, the objective 

scanner adjusted its position, thus the position of the objective, accordingly to maintain the 

nanoparticle of interest in focus. Different rotation speeds were used to test the performance 

of the auto-focusing capability. Both movies and objective scanner positions were recorded 

simultaneously and exported by tracking program in manager. This step was also used 

every time at the beginning of live cell experiments to cross-check the position of the wedge. 
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Figures 

 

 

 

 
 

 

Figure 1. 3D orientation angles of a dipole (bold black arrow): azimuthal angle  and 

elevation angle . The x- and y-axes are set according to the polarization directions of the 

illumination light. The dipole shown here corresponds to the long axis of a gold nanorod, 

whose centroid locates at (x, y, z).  
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Figure 2. Principle and localization precision of the parallax-DIC microscope. (A) Schematic 

illustration of the instrumental setup.  (B) Bright (left), dark (middle), and half-bright-half-

dark (right) images of a gold nanorod (40 nm  80 nm) at different orientations and vertical 

positions. The half-plane images are aligned by the center of mass of the nanorod at the focal 

plane (z = 0 μm). The yellow dashed lines indicate the z position of the center of the gold 

nanorod in focus. (C) Calibration of the 5D-SPT. The distance between the two half-plane 

images changes linearly with the z position of the gold nanorod within ±0.5 μm of the focal 

plane. The distance for an in-focus gold nanorod is defined as d0. The error bars reflect the 

standard deviations of the distances measured when the nanorod’s azimuthal angle   

changes in the range of 0-180 with 5 steps. (D) 3D localization distribution of the gold 

nanorod. (E-G) Histograms of the localization distribution along x (E), y (F) and z (G) 

directions are fitted with Gaussian functions that yield standard deviations of 11 nm in x, 14 

nm in y, and 17 nm in z.  
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Figure 3. Intracellular transport of a nanorod-containing vesicle in a living A549 cell. (A) 

The x, y, and z displacement, the relative DIC intensities and orientation angles of the gold 

nanorod over time. The entire recording can be divided into 4 segments as labelled: (1) 

searching for a track; (2) vertical transport; (3) a big turn; (4) lateral transport with twisted 

up-and-down motions. (B) The 3D trajectory of the cargo. The starting position (0, 0, 0) is 

highlighted by the red star.  

 



www.manaraa.com

85 

Supporting Information 

 

for 

 

Five-dimensional Tracking of Cargos in Live Cells 

 

 

Supporting movies* 

 

Movie S1. The parallax-DIC images of a gold nanorod at three orientations. From left to 

right: the nanorod is placed with its long axis at 0o, 45o and 90o relative to the bright optical 

axis.  

Movie S2. The movement of a spherical vesicle inside an A549 human lung cancer cell 

captured under the parallax-DIC microscope at 20 frames per second.  

Movie S3. The transport of a gold nanorod-containing vesicle that performed vertical 

movement. The corresponding figure is Figure 3.  

Movie S4. The second example of the transport of a gold nanorod-containing vesicle. The 

corresponding figure is Figure S5. 

Movie S5. The third example of the transport of a gold nanorod-containing vesicle. The 

corresponding figure is Figure S6. 

*: Movies are available upon request. 
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Supporting Figures 

 

 

 
 

 

Figure S1. Parallax-DIC images of A549 cells from a vertical scan. The cells are scanned 

from bottom (the coverslip side) to top in 0.5 µm steps at 20 frames per second.  
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Figure S2. Computer simulated half-plane and full-plane images of gold nanorod showing 

bright (left), half-bright-half-dark (middle) and dark (right) images at different z positions. 
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Figure S3. Parallax-DIC images of a gold nanorod at different orientations. (A) The in-focus 

half-plane image patterns of the gold nanorod at different orientations relative to the optical 

axes. The sample slide is rotated from 5o to 180o in 5o steps. The scale bar represents 1 μm. 

(B) The normalized bright part (blue) and dark part (red) intensities of the half-plane images 

on the top in each pair. 
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Figure S4. Evaluation of the Performance of the auto-focusing. Solid red circles (1000D) 

and solid black squares (500D) corresponding to the z axial of objective scanner increase 

when microscope sample stage was moved down at 1000 and 500 steps per second (0.70 

µm/s and 0.35 µm/s) while solid green ascending triangle (500U) and solid blue descending 

triangle (1000U) refer to z axial of objective scanner decrease when sample stage was moved 

up at 500 and 1000 steps per second. These data points were all well fitted with linear lines 

and the coefficient of determination (R2) were all greater than 0.99. The slopes were labelled 

with same color in the figure. 
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Figure S5. The 3D trajectory (A) and the relative DIC intensities and contrast (B) of a 

vesicle moving in a live A549 cell. The relative DIC intensities of the bright part and dark 

part are shown in blue and red, respectively. The contrast is shown in black. The starting 

position (0, 0, 0) is highlighted by the red star. The standard deviations of the intensity and 

contrast changes are all smaller than 0.02 unit, showing consistent signals for the vesicle 

remained in focus. 
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Figure S6. Intracellular transport of a gold nanorod-containing vesicle. (A) The x, y and z 

displacement (shown in wine, dark yellow, and black respectively) and the relative DIC 

intensities of the nanorod moving inside of a live A549 cell. The bright part and dark part 

intensities are shown in blue and red respectively. The blue lines divide the movement into 

two segments: The particle (1) performed regional random diffusion; (2) transported along 

the microtubule track with twisted up-and-down motions; (3) resumed regional random 

diffusion; (4) underwent directional transport.  (B) The three dimensional trajectory of the 

nanorod. The starting position (0, 0, 0) is highlighted by the red star. 
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Figure S7. Another example of intracellular transport of a gold nanorod-containing vesicle. 

(A) The x, y, and z displacement (shown in wine, dark yellow, and black respectively) and 

the relative DIC intensities of the nanorod moving inside of a live A549 cell. The bright part 

and dark part intensities are shown in blue and red respectively. The cargo (1) transported 

with twisted up-and-down motions; (2) paused with rotation; (3) underwent directional 

transport; (4) transported with twisted up-and-down motions again. (B) The three 

dimensional trajectory of the nanorod. The starting position (0, 0, 0) is highlighted by the red 

star. 
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CHAPTER 4 

AUTOCORRELATION FUNCTION ANALYSIS OF ROTATIONAL DYNAMICS OF 

GOLD NANOROD 

 

Abstract 

Single particle tracking (SPT) is proven to be powerful in investigating the rotational 

dynamics of complex systems. With the development of light microscope and sensitive 

camera, vast time-lapse imaging data can be recorded in single particle orientation and 

rotational tracking (SPORT) experiments. It is of importance to use the appropriate data 

analysis method to extract accurate and precise information from these recorded movies. 

Autocorrelation function (ACF) analysis was reported to be an effective tool to study the 

correlation of the fluctuation of intensities in a time series. In this study, the rotational 

dynamics of polyethylene glycol (PEG) modified gold nanorods (AuNRs) on synthetic lipid 

bilayers were recorded with high temporal resolution in differential interference contrast 

(DIC) microscopy without suffering photobleaching. Binning was used to study the influence 

of the exposure time on AuNR rotation. ACF analysis coupled with computer simulations 

was used to investigate rotational dynamics based on the correlation of the fluctuations 

between the DIC bright and dark intensity. The comprehensive study on the data treatment 

and the effect of experimental parameters on rotational dynamics will be beneficial to data 

interpretation and experiment design in DIC-based SPORT experiment. 
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Introduction 

Single particle tracking (SPT) has been proven to be a useful tool in dynamic studies 

of in material science and in biological systems as it provides the possibility to observe the 

heterogeneous behaviors of individual probes, which may be cancelled out in ensemble 

measurements, to reveal the real distributions of molecular activities.1-8 SPT experiments 

record the motions of individual particles (tracking probes) over time and generate time-lapse 

intensity data.1,9 Data analysis is as important as the experiment itself because the SPT data 

contain not only the intensity at each given time in the time series but also the position and/or 

orientation of particles that are being tracked. Moreover, the information usually correlated to 

the dynamic behavior of the particles in complex systems, such as live cells. The derived 

information can then be linked to underlying processes.10 

Autocorrelation function (ACF) analysis is a powerful mathematic tool. It has been 

used in numerous areas such as statistics, signal processing, and music recording. It has been 

widely used in scientific data analysis including but not limited to fluorescence correlation 

spectroscopy (FCS),11-14 the determination of the particle size distributions in dynamic light 

scattering (also known as photon correlation spectroscopy), the SEQUEST algorithm for 

mass spectrum analysis,15 and single particle/molecule rotational tracking.16-20  

ACF analysis has been demonstrated to be an effective tool to extract rotational time 

scale and fluctuation of intensity, even from low signal-to-noise (S/N) data.16-18,21 The 

nanoscale behavior of individual probes and their rotational dynamics, which usually relate 

to the molecular mechanisms, can be obtained by analyzing the intensity fluctuations over 

time. In spite of significant advances in synthesis of brighter and more photostable 

fluorescent probe and the availability of more sensitive detectors, the observation time of the 
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fluorescent probes in single molecule fluorescence spectroscopy/microscopy is relatively 

short because of the use of laser as light source and the irreversible photochemical bleaching 

of fluorescent probes. Previous studies demonstrated that the length of the recorded trajectory 

can greatly affect the rotational determination in ACF analysis.16-18 Moreover, the effective 

sample size (the number of independent observations) in a time series of ACF analysis is 

smaller than the recorded trajectory length. The measurement time should be more than an 

order of magnitude longer than the rotational correlation time to capture the rotational 

dynamics.16 Shorter observation time and lower S/N may lead to greater statistical 

uncertainty. 22-24 One way to improve the quality of ACF analysis is to obtain the trajectories 

as long as possible, for example, by lowing the probing laser power, reducing exposure time, 

using oxygen scavenging systems to remove quenchers in solution, etc.  

Nonfluorescent probes possess excellent photostability and unique optical properties, 

are becoming a popular alternative choice to traditional fluorescent probes in SPT 

applications. 25-27 Gold nanorods (AuNRs) as one of the outstanding examples, have been 

widely used in single particle orientation and rotational tracking (SPORT) experiments due to 

its high photostability, versatile surface functionality and foremost, the anisotropic localized 

surface plasmon resonance (LSPR).13,14,19,20,28-31 ACF analysis was used in several of these 

studies in several reports for determining the rotational dynamics of AuNRs.13,14,19,20,28,31 

Surface modification of the AuNRs controls the biological behavior.32-34 PEG is one of the 

most commonly used surface modifiers to reduce the unspecific interactions and to maintain 

the stability in physiological conditions. 

DIC microscope uses halogen lamp rather than laser as light source. The considerably 

low illumination light intensity causes minimal disruptions to cell functions. Combined with 
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photostable AuNRs as tracking probes, it is possible to track the motion of AuNRs for 

theoretically unrestricted observation time without suffering photobleaching in live cells. 

Experimentally, the observation duration of SPT in DIC microscopy is limited by the cell 

viability, image data storage, sample drifting, and apparatus instability. Typically, each cell 

sample can be used for up to several hours. 

In this study, the rotational dynamics of PEG-modified gold nanorods on synthetic 

lipid bilayers were recorded under a DIC microscope using a Hamamatsu ORCA-Flash 2.8 

complementary metal-oxide semiconductor (CMOS) camera. Only those AuNRs without 

lateral motions were used as targets of interest. High temporal resolution movie recordings 

were achieved by limiting the region of interest to a small area to maximize the frame rate in 

sub-array readout mode. Different “temporal resolution” image stacks were generated using 

the bin function in NIH ImageJ software. These image stacks were then subjected to ACF 

analysis through fitting stretched exponential function to extract the mean relaxation time and 

correlation coefficient. The influence of the experiment parameters such as the recorded 

trajectory length and temporal resolution were studies with the help of computer simulations. 

Hopefully, this study can set up a model system to help with the data analysis and experiment 

designs of future rotational dynamics studies. 

 

Experimental Section 

Preparation of PEG-modified gold nanorods 

Modification of AuNRs with PEG was carried out by following a published method 

with modifications.35 The cetyltrimethylammonium bromide (CTAB) stabilized AuNRs (40 

nm × 118 nm, longitudinal SPR 700 nm, 2.4 × 1010 nps/mL) were purchased from Nanopartz 
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(Salt Lake City, UT). Before modification, the solution was first centrifuged at 3000 g for 6 

min and resuspended in 18.2 M deionized water twice to get rid of the excessive CTAB in 

the solution. PEG-thiol (MW 5000) obtained from Sigma Aldrich was diluted in dimethyl 

sulfoxide (DMSO) to a final concentration of 20 mM. 4 L of the 20 mM PEG-thiol solution 

was allowed to react with 200 L pre-cleaned gold nanorods solution at room temperature 

for 3 h. The resultant PEG-modified AuNRs solution was cleaned up by centrifugation and 

resuspended in 18.2 M deionized water before using. Zeta potential of the PEG-modified 

AuNRs solution was measured to be ζ = + 2.1 mV on a Nano-ZS90 Zetasizer manufactured 

by Malvern Instruments, United Kingdom. 

 

Preparation of synthetic lipid bilayer 

Reported methods were used for the synthetic lipid bilayer preparation with slightly 

changes.36,37 The neutral phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

(POPC) solution (25 mg/mL in chloroform) was purchased from Avanti Polar Lipids. 20 μL 

of the POPC solution was dried by a gentle nitrogen stream. In order to prevent the 

disruption of the lipid self-assembly by chloroform, the dried POPC was placed in vacuum 

for more than 3 h at room temperature to eliminate the residual chloroform. 1 mL phosphate 

buffered saline (1× PBS, pH 7.4) was added to the dried POPC and the final POPC 

concentration became 0.5 mg/mL. A cloudy multilamellar vesicles suspension solution was 

produced in PBS after 30 min rehydration and vortexing. The large unilamellar vesicles 

solution was produced by extruding the suspension solution through a 100 nm pore size 

polycarbonate membrane (WHA110405) from Sigma-Aldrich for no less than 21 times using 

a mini-extruder manufactured by Avanti Polar Lipids. The planar synthetic lipid bilayer self-
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assembled in the sandwiched structured microscopic chamber made by glass slide, double-

sided tapes, and cover slipe in about 10 min when the unilamellar vesicle solution was 

injected. 1× PBS was used to wash away the excess free lipids three times. PEG-modified 

AuNR solution was added onto the synthetic lipid bilayer in the sandwiched chamber before 

imaging. 

 

DIC microscopy 

The Nikon Eclipse 80i upright microscope operated in DIC mode was used for this 

work. The light source, a halogen lamp has a maximum output power of 100 Watts. The 

maximum output power of the lamp was used for all experiments for fair comparison. The 

microscope utilized two polarizers, two Nomarski prisms, a high numerical aperture (NA 

1.4) oil-immersion objective and a NA 1.4 oil condenser for DIC image formation. A 

semrock 700/13 nm BrightLine single-band bandpass filter was inserted in the illumination 

light path. Movies and images were collected by a Hamamatsu ORCA-Flash 2.8 CMOS 

camera. HCImage Live software from Hamamatsu was used to control the camera. Sub-array 

readout function of the CMOS camera was used to confine the region of interest into 24 × 24 

pixels when 1 ms temporal resolution was used for capturing movies and 40 × 24 pixels for 2 

ms temporal resolution recording. The recorded movies were directly saved into memory as 

TIFF images with the option of streaming data to memory. This can maximize the read out 

speed (frame rate) of the recordings. NIH ImageJ and MATLAB were used for image 

processing and the following data analysis and computer simulations. 

 

 



www.manaraa.com

99 

Data analysis and computer simulations 

After the movies were collected, the bin function (under the main menu, Image, 

Transform, Bin) in imageJ was used to generate desired artificial “temporal resolution” 

image stacks. X, Y shrink factors were always set to 1 while Z shrink factor was set to 

different value to get artificial image stack with different “temporal resolution”. Meanwhile, 

summation was used as default bin method for all binning operations. Different image stacks 

with desired “temporal resolution” can be generated in similar manner. ImageJ Macros codes 

were compiled for batch binning processing.   

The time dependent DIC bright (IB) and dark intensity (ID) traces were extracted from 

the recorded image stacks and the substacks that produced by binning. Analogues to the s 

polarized and p polarized scattering or fluorescence in polarization anisotropy studies, the 

reduced linear dichroism (LD) in DIC was defined as:17,31,38  . The 

rotational dynamics of PEG-modified AuNRs were analyzed from the correlation of the 

fluctuating bright and dark intensities. This reduced LD represents the measurement of the 

transition dipole orientation when the effect of high N.A. optics is taken into account. It can 

also reduce the noise caused by experimental artifacts such light intensity fluctuations. The 

autocorrelation of the reduced LD was then fitted by a stretched exponential function 

 through non-linear least squares fittings.18,19,38-40 Here, f0 is the pre-exponential 

factor,  is the characteristic time constant, and  is the stretching exponent. The mean 

relaxation time (<>) can be calculated as: . Here Γ is Gamma function.   of 

the decay represents the in-plane rotating speed of the AuNRs, with a smaller   value 

corresponding to a faster rotation.19 
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The computer simulations was adopted from a previous report with modifications to 

describe the rotational Brownian motion of AuNRs with randomized rotation direction and 

step size for ACF analsis.20 The normalized DIC intensities were calculated based on the 

simplified mathematical equations with the elevation angle θ and the azimuthal angle φ: Ibright 

≈ 1 + cos2θsin4 and Idark ≈ 1 - cos2θcos4.30 Different simulation data were generated to 

study the influence of rotation speed and trajectory length on the ACF analysis as mentioned 

in the results and discussion. 

 

Results and Discussion 

The average size of the CTAB-capped AuNRs is 40 nm in diameter and 118 nm in 

length. The longitudinal SPR peak is located at 700 nm. Because PEG modification does not 

alter the longitudinal SPR of the AuNRs, so a 700/13 nm single-band bandpass filter was 

used to selectively excited the longitudinal SPR of the PEG-modified AuNRs to produce the 

highest DIC contrast of the AuNRs since the wavelength dependent properties of noble metal 

nanoparticle in DIC microscopy. The size of the CTAB-capped AuNRs used in this study is 

much larger than the ones that were used in other studies which also utilized ACF analysis 

for rotation dynamics.13,14,19,28,29 Positively charged CTAB-capped AuNRs (zeta potential ζ = 

+ 40 mV) changed to nearly neutral PEG-modified AuNRs (zeta potential ζ = + 2.1 mV). The 

hydrodynamic size of the AuNRs will increase a little after PEGylation. Thiol groups in the 

PEG molecules formed covalent bond with the surface of AuNRs by replacing the surface 

CTAB. The slightly positive charge of the PEG-modified AuNRs solution might attribute to 

the CTAB residues that was not able to be removed completely by centrifugation. This also 

indicated the successful surface modification of the PEG on AuNRs. 
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A dense layer of PEG on AuNRs rendered the hydrophilicity to AuNRs, thereby 

increased the water solubility of the PEG-modified AuNRs. Based on the experiment 

observations (Movie S1), the lateral diffusions of most of the PEG-modified AuNRs were 

restricted after they landed on the synthetic lipid bilayer surface. This might because of the 

relatively large size of the PEG-moidfied AuNRs and possible interpenetration of the PEG 

molecules inside the lipid bilayer.31 The insertion of PEG molecules inside the synthetic lipid 

bilayer caused the lateral ‘frozen’ of the PEG-modified AuNRs, however, the particles were 

still rotating since the PEG chains are not rigid. If large amount of the PEG chains from a 

same particle anchored into the synthetic lipid bilayer, the stop of AuNR rotation may occur. 

Yet, these speculations will require further experimental evidences.  

The S/N ratios of the bright and dark intensity of DIC measurements increase with the 

increase of particle size. The AuNRs used in this study are large enough to generate 

sufficiently high signal intensity at millisecond temporal resolution. Thus most of the movies 

were recorded at 1 or 2 ms although signal strength was sacrificed with the increasing of 

temporal resolution. The recorded movies are time dependent image stacks. The sub-array 

readout function of the Hamamatsu ORCA-Flash 2.8 CMOS camera allowed the selection of 

small area of CMOS image sensor for detecting only the AuNRs of interest. Theoretically, 

the readout speed increases with the decrease of the vertical line width of the section. 

However, the horizontal line width of the recorded movies were also restricted in the 

experiments to reduce the size of the recorded movies, and thus the software processing time 

was reduced to maximize the readout. Meanwhile, the recorded images were first streamed 

into memory and then saved into hard drive, this also speeded up the data processing. It is 
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possible to achieve maximum 1273 frames/second (fps) when the pixel size of the vertical 

line of 8 is used. 

In the context of image data processing, binning usually achieved by combining the 

signal of the adjacent pixels in image sensor to increase the sensitivity as tradeoff for 

resolution since the overall number of pixels is reduced. However, the binning used in the 

studies is slightly different. For any given image stack, X, Y shrink factors were always set to 

1 and Z shrink factors was specified to certain value to produce a new substack with different 

artificial “temporal resolution”. The substack is a sequence of images made by bins that is 

calculated from the summation of all the image clusters of each bin. For example, if 2 is used 

as Z shrink factor for a 15000 frame movie recorded at 2 ms, the binning process will 

generate a 7500 frame image stack with artificial “temporal resolution” of 4 ms. The same 

method was used to generate different “temporal resolution” image stacks. ImageJ Macros 

codes were compiled for batch binning processing. It is worth noting that this binning 

method only works for those PEG-modified AuNRs that are laterally ‘frozen’. If the AuNRs 

are moving, the Z shrink of the binning will result in distorted images in the substacks. 

Theoretically, the AuNRs can be tracked for unlimited time in DIC microscopy. 

Experimentally, especially in live cell studies, the observation duration is restricted by many 

experimental factors such as the instrument stability, cell viability, and data storage limit. 

Practically, we recorded 15000 frame (30 s) movies for the PEG-modified AuNRs rotating 

on the synthetic lipid bilayer. Initially, 2 ms temporal resolution was used for capturing these 

15000 frame movies unless stated otherwise. The time-lapse DIC bright and dark intensities 

were extracted from these image stacks to calculate the reduced linear dichroism. The 

azimuthal angle and elevation angle of the PEG-modified AuNRs can also be obtained from 
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the relative intensities. Through non-linear least squares fittings of the correlation of the 

reduced linear dichroism, the mean relaxation time and correlation coefficient were 

extracted. Same data processing procedures were followed to extract the mean relaxation 

time and correlation coefficient of all the binned substacks. 

When a PEG-modified AuNR is lying flat and fixed on a microscope coverslip, the 

elevation angle θ equals to 0, which will further simplify the two DIC intensity equations to: 

Ibright ≈ 1 + sin4 and Idark ≈ 1 - cos4. When the sample is rotated on the stage continuously 

with the same step size (same azimuthal angle change in each step) and direction for a full 

360 degree rotation, the DIC bright and dark intensities increase or decrease together. This 

provided an excellent correlated in-plane rotation example, and the correlation coefficient of 

the intensities was calculated to be 0.88. This deviated from the perfect correlated correlation 

value of 1 because of the term of sin4 and cos4 in the intensities affect the perfect linear 

dependency. As shown in Figure S1 (Supporting information), a representative example of 

a 40 × 118 nm PEG-modified AuNRs rotating with 10 degree increment for a 360 rotation. 

The experimental data (solid blue squares and solid purple dots) were in good agreement 

with the calculated intensity changes (solid red line and solid black line). Due to the presence 

of noise in the imaging experiments, a typical 10 – 15% relative errors exist in the DIC 

intensity measurements.30 An AuNR rotates out of the horizontal plane with a fixed 

azimuthal angle is denoted as basic out-of-plane rotation. All the other more complex 

rotational modes can be considered as the combination of the in-plane and out-of-plane 

rotation with different proportions.20 

Figure 1 and Figure 2 showed the DIC bright and dark intensity traces for a same 

AuNR that were recorded at (A) 2 ms for 15000 frames and the binned traces at (B) 6 ms, (C) 
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10 ms and (D) 30 ms at two different time t1 and t2. The total observation durations were all 

30 s. With higher temporal resolution, the imaging frame rate is higher, thus more image 

frames were captured. The binned substacks of 6 ms, 10 ms, and 30 ms movies contained 

5000, 3000, 1000 frames, respectively. Also binning reduced the noise in DIC measurements 

and provided noticeable increments on the bright and dark intensity. However, the 

background intensity also increased in the same amplitude, which means there’s no 

improvement on the DIC contrast though binning.  

ACF analysis were applied to these movies, and correlation coefficients were 

calculated for each of them, Figure 1 (A) 0.71, (B) 0.79, (C) 0.80, (D) 0.82 and Figure 2 (A) 

0.71, (B) 0.77, (C) 0.78, (D) 0.80.The correlation coefficients calculated from all these 

movies were all larger than 0.7, which indicated the mostly in-plane rotation of the PEG-

modified AuNR on the synthetic lipid bilayer. For the rotaion recorded in Figure 1 (time t1), 

the mean relaxation times decreases from 0.088 to 0.062,and 0.048 s when the exposure time 

increased from 2 to 6, 10 ms and then increased to 0.120 s at 30 ms. Similar trend was 

observed for the rotaion recorded in Figure 2 (time t2), as the mean relaxation times changed 

from 1.33 to 1.18, 1.19, 1.82 s for exposure time 2 to 6,10, 30 ms. The changes on the 

apparent mean relaxation times from the ACF analysis might related to the true rotation of 

the AuNRs. If the exposure time is shorter than real rotation time, then more than one frame 

of the DIC image of the AuNR in same orientation may be recorded. However, in the ACF 

analysis, every frame of the image is counted to calculate the mean relaxation time. Rotations 

with more extra frames will yield a larger mean relaxation time. It should be emphasized that 

the rotational mean relaxation times were calculated only for those rotating PEG-modified 

AuNRs without lateral movement and hence cannot reflect the dynamics of the whole 
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population. The rotational mean relaxation times calculated for different particles or the same 

particle observed at different time were different. The heterogeneity of the rotational 

dynamic is confirmed and this is one of the causes that lead to nonexponential decays. The 

semi-quantified rotational mean relaxation time is in the range of 0.085 to 1.33 s, which is 

consistent with the results observed on live cell membranes.19   

The influence of the exposure time on the correlation coefficient have also been 

investigated. Both the original data collected with different exposure time and the data 

binned from shorter exposure time display the same increase of correlation coefficient as the 

exposure time increases (Figure 3). Relative measurement errors of the DIC bright and dark 

intensities decrease with the increase of the exposure time. The correlation coefficients are all 

smaller than 0.88, which indicates a small portion of the out-of-plane rotation is involved in 

the rotational dynamics of the PEG-modified AuNRs. As demonstrated in the previous study, 

out-of-plane rotation will only contribute to the intensity but won’t affect the image 

patterns.20 This is also predictable from the mathematical equations for orientation 

calculations. 

When the particles are not rotating, the DIC bright and dark intensities are supposed 

to be constant. DIC images of PEG-modified AuNRs show different proportions of black and 

white depending on the particle’s orientation. AuNRs orientated to be a totally white, a half 

white half black, and a totally black were recorded at 1 ms for 30,000 frames. These movies 

were used to generate the DIC bright and dark intensity traces with different exposure times. 

Figure S2 in Supporting Information shows the complete 1000-frame DIC bright and dark 

intensity traces of the binned substack at 30 ms. Instead of having constant bright and dark 

intensities, the traces displayed frequent intensity fluctuations which may lead people to 
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believe that these intensity changes are arose from rotation. Figure 4 (A, D, and G) are 

extracted from the first 100 frames of the DIC intensity traces of the Supporting 

Information Figure S2 (A, B, and C). There are two ways to distinguish the DIC bright and 

dark intensity traces of rotating and not rotating AuNRs. One way is through direct 

visualization of the DIC image stacks. Figure 4 (B, E, and H) illustrates the 100-frame DIC 

image stack in the stitched way. The DIC images did not change over time. The other way is 

through ACF analysis as shown in Figure 4 (C, F, and I). The 1 ms movie were binned into 

different exposure times. The correlation coefficients fluctuates around zero for different 

exposure times for all of these three cases. It is known that for a time series that is completely 

random, as in this case, the correlation coefficient is normally distributed with a mean of 

zero. This demonstrates that the ACF analysis is fairly insensitive to noise. 

Consider that PEG-modified AuNRs were performing predominantly in-plane 

rotational motions on synthetic lipid bilayer, the computer simulations were carried out for 

in-plane rotations. Figure 5 shown the simulated DIC bright and dark intensity traces of (A) 

fast and (B) slow in-plane rotations at 2 ms. The step size of the fast rotation was to be 2.5 

times larger than that of the slow rotation. With the larger step size, the AuNR has higher 

probability to rotate a larger angle in two consecutive frames. The rotational mean relaxation 

times extracted from these two traces were calculated to be 0.093 and 0.52 s. The correlation 

coefficients were as expected to be around 0.88 for the perfect in-plane rotations. 

 

Conclusions 

In summary, PEG-modified AuNRs rotating on synthetic lipid bilayer was used as 

model system for rotational dynamics study. The rotational motions of the laterally frozen 
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AuNRs were recorded with high temporal resolution under a DIC microscope. The faster 

temporal resolution image stacks were binned on the time axis in ImageJ to generate 

substacks with different temporal resolutions and these image substacks were subjected to 

ACF analysis and used for comparison with simulation results. These recorded rotations of 

AuNRs showed predominately in-plane motions. The correlation coefficient increases with 

the increase of exposure time. The ACF analysis is insensitive to noise. Further development 

of this approach can help on the data analysis and experimental designs of rotational studies 

using DIC-based SPORT technique. 
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Figures 

 

 

Figure 1. A rotation case of the PEG-modified AuNR on synthetic lipid bilayer at time t1. 

(A) is the DIC bright and dark intensity traces for the originally recorded movie at 2 ms.  (B, 

C, and D) are the DIC bright and dark intensity traces for the substacks obtained from 

binning for 6 ms, 10 ms and 30 ms. 
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Figure 2. A rotation case of the same PEG-modified AuNR as in Figure 1 on synthetic lipid 

bilayer at a different time t2. (A) is the DIC bright and dark intensity traces for the originally 

recorded movie at 2 ms.  (B, C, and D) are the DIC bright and dark intensity traces for the 

substacks obtained from binning for 6 ms, 10 ms and 30 ms. 
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Figure 3. Influence of the exposure time on correlation coefficient of PEG-modified AuNRs 

rotation. Black solid square data points are the correlation coefficients obtained from the 

ACF analysis of the binned substacks of 2ms, 5ms, 10ms, and 30 ms from the originally 

recorded 1 ms movie (first data point from the left). Red solid dots data points were extracted 

from the ACF analysis of movies that were experimentally recorded at 1 ms, 2ms, 5ms, 

10ms, and 30 ms, respectively. All the data points were the average of 5 measurements. Error 

bars represented the standard deviations. Same movie was used to produce the first data 

point.  
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Figure 4. PEG-modified AuNRs that were not rotating on synthetic lipid bilayer. (A, D, and 

G) are the first 100 frames of the total 1000-frame DIC bright and dark intensity traces 

(supporting information Figure S2) of a totally white, a half white half black, a totally 

black when the AuNRs orientated differently on the surface. These were extracted from the 

substacks that were binned to 30 ms from 1 ms movies. (B, E, and H) are the corresponding 

stitched DIC images to (A, D, and G). The time order was from left to right and top to 

bottom. The scale bar is 2 μm for (B, E, and H).  (C, F, and I) are the correlation coefficient 

changes with respect to the exposure time for (A, D, and G). Correlation coefficients were 

obtained from the ACF analysis of the original 1 ms 30000 frame movie, and substacks 

generated by binning from 2 ms to 30 ms. 
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Figure 5. Simulated DIC bright and dark intensity traces of (A) fast and (B) slow in-plane 

rotations at 2 ms. The step size of the fast rotation was to be 2.5 times larger than that of the 

slow rotation. 
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AUTOCORRELATION FUNCTION ANALYSIS OF ROTATIONAL DYNAMICS OF 

GOLD NANOROD 

* Movies are available upon request. 
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Figure S1. Periodic changes of the normalized DIC intensity of a 40 × 118 nm PEG-

modified AuNRs fixed on a glass coverslip and rotated every 10 degree for 360 degree on 

sample stage. Red and black lines were calculated theoretical DIC bright and dark intensities 

over 360 degree. Solid blue squares and solid purple dots were obtained from the recorded 

DIC image of PEG-modified AuNRs at different orientations.    
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Figure S2. Complete 1000-frame DIC bright and dark intensity traces of a totally white, a 

half white half black, a totally black when the AuNRs orientated differently on the surface 

from binned 30 ms movies. The first 100 frames of (A, B, and C) were zoomed in to produce 

the intensity traces in Figure 4 (A, D, and G). 
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CHAPTER 5 

OVERALL CONCLUSIONS 

 

Single particle tracking (SPT) has been proven to be a very powerful tool in dynamic 

studies of chemical and biological systems. Single particle orientation and rotational tracking 

(SPORT) techniques are able to study the translational and rotational behaviors of the 

imaging probes to disclose the crucial information in many biological processes. DIC-based 

SPORT technique is believed to be one of the most unique SPORT techniques for SPT in 

dynamic systems.  

The development of the DIC-based SPORT techniques relies on the innovations in 

imaging probes, advance in instrumentations and particle tracking algorithm, and progress in 

data interpretations. With the goal of making contributions to the development and extending 

the applications of SPORT in dynamic systems, this dissertation presents the use of 

multishell Au/Ag/SiO2 core-shell hybrid nanorods with tunable optical properties as the new 

SPORT probes. These optically anisotropic hybrid plasmonic probes have well-defined size 

and shape and exhibit polarization and wavelength dependent behavior in DIC microscopy. It 

provides enhanced detection sensitivity with addition of the silver layer, improved stability 

and additional surface modification possibility. The design of Parallax-DIC microscopy and 

the implementation of auto-focusing algorithm in 5D-SPT method demonstrates the technical 

advance in DIC-based SPORT technique. It enables the simultaneous 3D spatial tracking and 

orientation determination in the visualization of intracellular transport of cargos in live cells. 

With certain modifications, this auto-focusing algorithm can be incorporated into other light 

microscopic techniques. Taking the advantage of the nonphotobleaching nature of 
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nonfluorescent probes (AuNRs in this case) and ability of autocorrelation function analysis to 

extract information from noisy data, considerable long DIC intensity traces are subjected to 

autocorrelation function analysis with certain data interpretations. Experimental parameters 

for rotational study in DIC-based SPORT are examined with the help of computer 

simulations. The goal of this study is to help with future data analysis and experiment designs 

in rotational dynamics research using DIC-based SPORT technique. 

Most of the current studies using DIC-based SPORT techniques are technical 

demonstrations. Understanding the mechanisms behind the observed rotational behaviors of 

the imaging probes should be the focus of the future SPORT studies. More efforts are still 

needed in the development of new imaging probes, particle tracking methods, 

instrumentations, and advanced data analysis methods to further extend the potential of DIC-

based SPORT technique. 
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